МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ СПЕЦИАЛЬНАЯ АСТРОФИЗИЧЕСКАЯ ОБСЕРВАТОРИЯ РОССИЙСКОЙ АКАДЕМИИ НАУК (CAO PAH)

VTDEDMAIO

ПРИНЯТО	УТВЕРЖДАЮ
решением Ученого совета	Директор САО РАН,
CAO PAH № 404	/ Г.Г. Валявин /
от «20» июня 2022 г.	«»2022 г.
PAI	БОЧАЯ ПРОГРАММА
по дисциплине « <u>АККРЕЦ</u> І	ЮННЫЕ ДИСКИ В АСТРОФИЗИКЕ»
Научная специальность	1.3.1. ФИЗИКА КОСМОСА, АСТРОНОМИЯ
Объем занятий: Итого	72 ч. 1 1/3нел.

Объем занятий: Итого 72 ч. 1 1/3 нед.

Из них:

прицато

 Лекций
 30 ч.

 Практических занятий
 6 ч.

 Самостоятельной работы
 36 ч.

Рабочая программа составлена в соответствии с федеральными государственными требованиями, утвержденными приказом Министерства науки и высшего образования Российской Федерации от 20 октября 2021 года № 951, утвержденной Программой кандидатского экзамена по специальной дисциплине, соответствующей научной специальности 1.3.1. Физика космоса, астрономия, принятой на заседании Ученого совета САО РАН.

Автор: доктор физ.-мат. наук, профессор, главный научный сотрудник лаборатории физики звезд С.Н. Фабрика.

1. Общие положения

Аккреционные диски очень распространены в космосе. Они формируются вокруг релятивистских звезд — белых карликов, нейтронных звезд и черных дыр. Они присутствуют в ядрах галактик и квазаров, где находятся сверхмассивные черные дыры массой от сотен тысяч до десятков миллиардов масс Солнца. Аккреция вещества на черные дыры и нейтронные звезды – самый эффективный механизм выделения энергии (около 10% от mc2). Различают аккреционные диски радиативные (стандартные или диски Шакуры-Сюняева), адвекционные и сверхкритические. При темпах аккреции 0.01–1.0 от критического аккреционные диски – стандартные. В этом случае выделяемая в диске энергия выносится излучением. При меньших темпах аккреции диск становится адвекционным, излучение не успевает охладить диск. Адвекционные диски становятся толстыми и у них начинается истечение газа в виде струй. При темпах аккреции больше критических излучение также не может охладить диск, сверхкритический диск тоже становится толстым, и в нем формируется канал по оси диска. В канале появляются благоприятные условия для ускорения струй. Примером сверхкритического диска является уникальный объект Галактики – SS433. Также сверхкритические диски были у сверхмассивных черных дыр в ранние эпохи формирования квазаров.

В процессе изучения курса, аспирант освоит лекционный материал по теме, получит навыки работы в компьютерных программах, позволяющих проводить обработку оптических и рентгеновских данных, полученных на различных наземных и космических телескопах, а также на 6-метровом телескопе БТА САО РАН. Будут освоены методики расчета моделей аккреционных дисков и сравнение их с наблюдательными данными.

Дисциплина «Аккреционные диски в астрофизике» — $2.1.1.(\Phi)$ относится к факультативным дисциплинам образовательного компонента.

Предшествующими курсами, на которых непосредственно базируется дисциплина «Аккреционные диски в астрофизике», являются базовые дисциплины бакалавриата, магистратуры и специалитета, и элективные дисциплины — 2.1.6. «Компьютерная обработка результатов измерений», 2.1.7. «Астрономические светоприемники» и 2.1.8. «Физика массивных звезд».

Дисциплина «Аккреционные диски в астрофизике» логически, содержательно и методически связана с последующими компонентами программы аспирантуры — 1.1. «Научная деятельность, направленная на подготовку диссертации на соискание научной степени кандидата наук к защите», 1.2. «Подготовка публикаций и (или) заявок на патенты на изобретения, полезные модели, свидетельства о государственной регистрации программ для электронных вычислительных машин, баз данных», 2.2. «Практика», 3. «Итоговая аттестация».

2. Планируемые результаты освоения дисциплины, соотнесённые с планируемыми

результатами освоения программы

Pr.	результатами освоения программы						
№ п/п	Результаты освоения дисциплины	Результаты освоения программы					
Асп	Аспирант должен знать:						
1.	современные технологии получения наблюдательных данных для объектов с аккреционными дисками в оптическом и рентгеновском диапазонах;	РД-1, РД-2, РД-3, РД-4					
2.	методы теоретического анализа оптических и рентгеновских наблюдений аккреционных дисков;	РД-1, РД-2					
3.	методы оценок и определения физических параметров аккреционных дисков.	РД-1, РД-2					
Асп	ирант должен уметь:						
4.	использовать методики анализа наблюдательных данных;	РД-1, РД-2, РД-4					
5.	использовать всемирные банки информации при проведении исследований;	РД-1, РД-4					
6.	корректно обрабатывать оптические спектры предложенных объектов;	РД-1, РД-2, РД-4					
7.	определять физические параметры аккреционных дисков.	РД-1, РД-2, РД-4					
Асп	ирант должен владеть:						
8.	навыками в обработке спектроскопических наблюдений аккреционных дисков;	РД-1, РД-2, РД-4					
9.	методиками анализа оптических и рентгеновских наблюдений;	РД-1, РД-2, РД-4					
10.	основными методами определения физических параметров аккреционных дисков;	РД-1, РД-2					
11.	способами качественной и количественной оценки параметров изучаемых объектов, оценивать точность результатов.	РД-1, РД-2					

3. Структура и содержание дисциплины

Общая трудоемкость дисциплины составляет 1 1/3 недели (72 часа).

№ п/п	лисниппины.		иды учебноты, вклю остоятель у аспиран доемкост часах)	Формы контроля успеваемости	
		Лек.	Практ. зан-я	Сам.	
1.	Стандартные диски Шакуры-Сюняева.	5		6	
2.	Адвекционные диски с пониженным	5		6	

№ п/п	Наименование разделов и тем дисциплины, их краткое содержание	Виды учебной работы, включая самостоятельную работу аспирантов и трудоемкость (в часах)		Формы контроля успеваемости	
	темпом аккреции и образованием струй.				
3.	Сверхкритические аккреционные диски.	5		6	
4.	Наблюдательные проявления аккреционных дисков. Тесные двойные системы.	5	2	6	текущий контроль
5.	Наблюдательные проявления аккреционных дисков. Сверхмассивные черные дыры.	5	2	6	текущий контроль
6.	Наблюдательные проявления сверхкритических аккреционных дисков. Объект SS433.	5	2	6	текущий контроль итоговый зачет
	Итого:	30 ч	6 ч	36 ч	72 ч

4. Наименование и содержание практических занятий

№ п/п	Наименование работы	Кол-во часов	Форма проведения
1.	Тема 4. Наблюдательные проявления аккреционных дисков. Тесные двойные системы.	2	разноуровневые индивидуальные задания, опрос
2.	Тема 5. Наблюдательные проявления аккреционных дисков. Сверхмассивные черные дыры.	2	разноуровневые индивидуальные задания, опрос
3.	Тема 6. Наблюдательные проявления сверхкритических аккреционных дисков. Объект SS433.	2	разноуровневые индивидуальные задания, опрос итоговый зачет
	Итого:	6 ч	

5. Текущий контроль успеваемости и промежуточная аттестация

5.1. Форма проведения текущего контроля успеваемости

Текущий контроль осуществляется по результатам работы на практических занятиях. Промежуточный контроль – быстрый опрос на лекциях.

Текущий контроль работы аспирантов проводится преподавателем, ведущим занятия по дисциплине.

Итоговый зачет проводится в рамках промежуточной аттестации.

Перед итоговым зачетом по дисциплине аспиранту необходимо полностью выполнить практические работы по дисциплине. При наличии задолженностей по практическим работам аспирант к итоговому зачету не допускается.

5.2. Форма проведения промежуточной аттестации

Промежуточная аттестация проводится в форме итогового зачета по дисциплине. Итоговый зачет по дисциплине предусмотрен в устной форме.

Оценивание знаний обучающегося происходит по результатам устного ответа на один вопрос из перечня. На подготовку к ответу отводится 30 минут. При подготовке к ответу

аспиранту предоставляется право пользования программой дисциплины.

Итоговый контроль работы аспирантов проводится преподавателем, ведущим занятия по дисциплине.

При сдаче итогового зачета по дисциплине отметка *«зачет»* выставляется, если аспирант демонстрирует знание основного материала, излагает его, применяет теоретические положения при решении практических задач.

Отметка *«незачет»* выставляется в случае, если аспирант не знает значительной части программного материала, допускает существенные ошибки в изложении основного материала, не может увязывать теорию с практикой.

5.3. Вопросы к зачету

- 1. Каковы основные механизмы выделения энергии в аккреционных дисках?
- 2. Что такое адвекция излучения? Что такое адвекция тепла?
- 3. Каковы условия его формирования струй в адвекционных дисках?
- 4. Каковы условия формирования каналов и струй сверхкритических дисков?
- 5. Перечислите основные методы обработки оптических спектров, основные методы фотометрии?
- 6. Каковы методы обработки рентгеновских данных? Что такое среда XSPEC?
- 7. Опишите наблюдательные проявления тесных двойных систем.
- 8. Опишите основные отличия ТДС с белыми карликами, с нейтронными звездами и черными дырами?
- 9. Основные параметры аккреционных дисков у сверхмассивных черных дыр.
- 10. Наблюдательные проявления сверхкритических аккреционных дисков. Объект SS433
- 11. Основные механизмы и основные типы моделей рентгеновского излучения газа.

6. Учебно-методическое и информационное обеспечение дисциплины

6.1. Перечень основной литературы, необходимой для освоения дисциплины

- 1. Бисноватый-Коган Г.С. Релятивистская астрофизика и физическая космология, 2010, M. URSS
- 2. Fabrika S. the jets and supercritical accretion disk in SS433, 2004 UK, Cambridge
- 3. Фабрика С.Н., Атапин К.Е., Винокуров А.С., Шолухова О.Н. Ультраяркие рентгеновские источники. 2021, Астрофизический Бюллетень, том 76, №1, с. 6-42
- 4. Бескин В.С. Осесимметричные стационарные течения в астрофизике, 2005, М. Физматлит
- 5. Rybiski G., Ligynman A., Radiative processes in astrophysics, 1979, USA, Wiley
- 6. Frank J., King A., Raine D., Accretion power in astrophysics, 2002, UK, Cambridge University
- 7. Морозов А.Г., Хоперсков А.В., Физика дисков, 2005, ВолГУ, Волгоград.

6.2. Перечень дополнительной литературы, рекомендуемой для освоения лисциплины

- 1. Kallrath J., Milone E., Eclipsing binary stars, 1999, USA, Springer
- 2. Описание программы XSPEC http://heasarc.nasa.gov/xanadu/xspec/
- 3. Винокуров А.С., Спектроскопия туманностей и их моделирование с помощью фотоионизационного кода Cloudy, Методическое пособие, Нижний Архыз, 2014

6.3. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

- Пакет XSPEC для обработки рентгеновских данных http://heasarc.nasa.gov/xanadu/xspec/
- Сеть Астронет: http://www.astronet.ru/db/msg/1169494/index.html#Contents

- База данных по внегалактическим объектам: http://ned.ipac.caltech.edu/
- Астрофизическая информационная система ADS https://ui.adsabs.harvard.edu/
- База данных объектов за пределами Солн. с-мы SIMBAD http://simbad.u-strasbg.fr/simbad/
- Звездный каталог VIZIER http://vizier.u-strasbg.fr/viz-bin/VizieR
- Цифровой обзор неба DSS http://archive.eso.org/dss/dss
- Слоановский цифровой небесный обзор SDSS http://www.sdss.org

7. Перечень информационных технологий, включая перечень программного обеспечения и информационных справочных систем, профессиональных баз данных

– Пакет XSPEC для обработки рентгеновских данных.

8. Материально-техническое обеспечение

- экран;
- мультимедийный проектор;
- компьютер;
- выход в Интернет и интранет САО РАН в лабораторных корпусах;
- сервер общего доступа для обработки и хранения данных;
- текстовые и электронные ресурсы Научной библиотеки САО РАН;
- оборудование научно-исследовательских лабораторий САО РАН.

9. Особенности освоения дисциплины лицами с ограниченными возможностями здоровья

Освоение дисциплины лицами с ограниченными возможностями здоровья осуществляется на основе адаптированной рабочей программы с использованием специальных методов обучения и дидактических материалов, составленных с учетом особенностей психофизического развития, индивидуальных возможностей и состояния здоровья таких аспирантов.

Адаптированная рабочая программа входит в структуру адаптированной программы аспирантуры, которая разрабатывается под потребности конкретного обучающегося по его личному заявлению или решению комиссии по определению вида инклюзии и условий обучения сразу после зачисления такого аспиранта на 1 курс.

Порядок разработки адаптированной рабочей программы определяется локальным нормативным актом.