ФЕДЕРАЛЬНОЕ АГЕНТСТВО НАУЧНЫХ ОРГАНИЗАЦИЙ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ СПЕЦИАЛЬНАЯ АСТРОФИЗИЧЕСКАЯ ОБСЕРВАТОРИЯ РОССИЙСКОЙ АКАДЕМИИ НАУК (CAO PAH)

ПРИНЯТО

решением Ученого совета САО РАН № <u>322</u>

от «<u>16</u>» сентября 2014 г.

РАБОЧАЯ ПРОГРАММА

по специальной дисциплине

НАИМЕНОВАНИЕ: «КОМПЬЮТЕРНАЯ ОБРАБОТКА РЕЗУЛЬТАТОВ

ИЗМЕРЕНИЙ»

Направление подготовки	03.06.01 ФИЗИКА И АСТРОНОМИЯ			
Направленность (профиль) подготовки	01.03.02 АСТРОФИЗИКА И ЗВЕЗДНАЯ АСТРОНОМИЯ			
Присваиваемая квалификация:	ИССЛЕДОВАТЕЛЬ. ПРЕПОДАВАТЕЛЬ-ИССЛЕДОВАТЕЛЬ			

Объем занятий: Итого	72 ч.	2 з.е.
Из них:		
Лекций	14 ч.	
Лабораторных работ		
Практических занятий	38 ч.	
Самостоятельной работы	20 ч.	

п. Нижний Архыз 2014 Рабочая программа составлена в соответствии с требованиями федерального государственного образовательного стандарта высшего образования (Уровень высшего образования, Подготовка кадров высшей квалификации, Направление подготовки 03.06.01 Физика и астрономия), утвержденного приказом Министерства образования и науки РФ от 30 июля 2014 г. N 867, программы-минимум кандидатского экзамена, утвержденного приказом Министерства образования и науки РФ от 08 октября 2007г. № 274 и дополнительной программы кандидатского экзамена, принятой на заседании Ученого совета и утвержденной директором САО РАН.

Автор: к.т.н., научный сотрудник Лаборатории обеспечения наблюдений Емельянов Э.В.

1. ОБЩИЕ ПОЛОЖЕНИЯ

Целью курса является подготовка аспиранта к самостоятельной целенаправленной научной деятельности с возможностью наиболее эффективного использования рабочего времени для обработки экспериментальных результатов. Ознакомление с возможностями современных математических пакетов для ЭВМ очень важно для начинающего специалиста: он должен иметь представление в какой программе и какими методами можно решить поставленную задачу наиболее эффективно и быстро. В разработанном курсе все лабораторные работы выполняются в среде Octave, совместимом с проприетарным пакетом Matlab. Задания можно также выполнять и при помощи любого языка программирования или в любом другом математическом пакете.

Курс базируется на знаниях, которыми должен владеть выпускник физикоматематического факультета: основы теории вероятностей и комбинаторики, математический анализ, линейная алгебра, векторный и тензорный анализ. Так как некоторые методы являются относительно новыми, либо же подразумевают более глубокие познания, каждая лабораторная работа сопровождается кратким теоретическим введением, в котором в конспективной форме приведены основные знания, необходимые для выполнения данной работы.

Курс включает в себя семь разделов. Каждый из них (за исключением первого) сопровождается как лекционными, так и практическими занятиями.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОП АСПИРАНТУРЫ

Дисциплина «Компьютерная обработка результатов измерений» - Б1.В.ОД.4 обязательным дисциплинам вариативной части блока 1 «Дисциплины».

Предшествующими курсами, на которых непосредственно базируется дисциплина «Компьютерная обработка результатов измерений», являются базовые дисциплины бакалавриата, магистратуры и специалитета.

Дисциплина «Компьютерная обработка результатов измерений» логически, содержательно и методически связана с последующими блоками учебного плана – дисциплинами по выбору аспиранта вариативной части Б1.В.ДВ.1 «Интерферометрия астрономических объектов», Б1.В.ДВ.2 «Современная галактическая радиоастрономия», Б1.В.ДВ.3 «Лабораторная и астрономическая спектроскопия с высоким и средним разрешением», Б1.В.ДВ.4 «Аккреционные астрофизике», диски «Практическая космология Ближней Вселенной», Б1.В.ДВ.6 «Методы панорамной спектроскопии», Б1.В.ДВ.7 «Исследования звездного магнетизма», Б1.В.ДВ.8 «Гаммавсплески, массивные сверхновые и глобальное звездообразование на больших красных смещениях», Б1.В.ДВ.9 «Наблюдательные проявления релятивистских объектов в оптическом диапазоне», Б1.В.ДВ.10 «Близкие карликовые галактики: фотометрия и звездообразование», Б1.В.ДВ.11 «Использование MATLAB в астрономии», Б1.В.ДВ.13 «История астрономической спектроскопии», Б1.В.ДВ.14 «Интерферометрические методы в спектроскопии звезд», блоками 2 «Практики», 3 «Научно-исследовательская работа», 4 «Государственная итоговая аттестация» - Б2.2, Б3.1, Б4.Г.1, Б4.Д.1.

3. КОМПЕТЕНЦИИ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ

3.1 НАИМЕНОВАНИЕ КОМПЕТЕНЦИЙ

Индекс	Расшифровка
	-способность к критическому анализу и оценке современных научных
УК-1	достижений, генерированию новых идей при решении исследовательских
	и практических задач, в том числе в междисциплинарных областях;
УК-5	-способность планировать и решать задачи собственного
	профессионального и личностного развития;
	-способность самостоятельно осуществлять научно-исследовательскую
ОПК-1	деятельность в соответствующей профессиональной области с
	использованием современных методов исследования и информационно-
	коммуникационных технологий;
ПК-3	-способность использовать знания современных проблем и новейших
	достижений астрофизики в своей научно-исследовательской деятельности;
	-способность самостоятельно ставить конкретные задачи научных
	исследований в области астрофизики и решать их с применением новой
ПК-4	аппаратуры, оборудования, информационно-коммуникационных и
	цифровых технологий с учетом новейшего отечественного и зарубежного
	опыта;

3.2 СТРУКТУРА И КОМПОНЕНТНЫЙ СОСТАВ КОМПЕТЕНЦИЙ

Аспирант должен знать:

- наиболее распространённые численные методы решения систем уравнений, полиномиальных и дифференциальных уравнений (УК-1, ПК-3);
- основные методы очистки одно- и двумерных сигналов от шумов (ПК-3).

Аспирант должен уметь:

- вычислять основные характеристики случайных величин (ПК-3);
- находить корреляционные зависимости (ПК-3, ПК-4);
- получать спектрограммы сигналов и обрабатывать их (ПК-3, ПК-4).

Аспирант должен владеть:

- одним или несколькими математическими пакетами и/или языками программирования на уровне, достаточном для проведения базовых манипуляций с научными изображениями (УК-5, ОПК-1, ПК-4).

3.3 ПЛАНИРУЕМЫЕ КОМПЕТЕНЦИЙ

УРОВНИ

СФОРМИРОВАННОСТИ

Уровни		Дескрипторы			
сформи-	Индикаторы	«зачтено»	«не зачтено»		
po-					
ванности					
	Знает:	Знает:	Знает:		
	-наиболее	-наиболее	- простейшие матричные		
	распространённые	распространённые	операции;		
	численные метод	ы численные методы	- метод Ньютона решения		

Базовый	решения систем уравнений, полиномиальных и дифференциальных уравнений; - основные методы очистки одно- и двумерных сигналов от шумов.	решения систем уравнений, полиномиальных и дифференциальных уравнений; - основные методы очистки одно- и двумерных сигналов от шумов.	систем линейных уравнений; - методы линейной фильтрации сигналов.	
	Умеет: - вычислять основные характеристики случайных величин; -находить корреляционные зависимости; -получать спектрограммы сигналов и обрабатывать их.	Умеет: - вычислять основные характеристики случайных величин; -находить корреляционные зависимости; -получать спектрограммы сигналов и обрабатывать их.	Умеет: - определять математическое ожидание случайной величины; - вычислять коэффициент корреляции двух числовых рядов.	
	Владеет: - одним или несколькими математическими пакетами и/или языками программирования на уровне, достаточном для проведения базовых манипуляций с научными изображениями.	Владеет: - одним или несколькими математическими пакетами и/или языками программирования на уровне, достаточном для проведения базовых манипуляций с научными изображениями.	Владеет: - базовыми навыками работы в пакетах Octave/Matlab.	

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины составляет 2 зачетные единицы 72 часа.

Nº T/T	Наименование разделов и тем дисциплины, их краткое содержание		Виды учебной работы, включая самостоятельную работу аспирантов и трудоемкость (в часах)			
п/п			Практ. занятия	Лао. зянятия	Само- стоят. работа	успевае- мости
1.	Общие сведения об измерениях. Виды сигналов. Обзор методов анализа сигналов	2			1	
2.	Статистика и вероятность. Случайные величины и распределения	2	4		1	текущий зачет
3.	Теория физических измерений. Систематические и случайные погрешности	2	4		2	текущий зачет
4.	Теория оценок	2	8		2	текущий зачет

№ п/п	Наименование разделов и тем дисциплины, их краткое содержание		Виды учебной работы, включая самостоятельную работу аспирантов и трудоемкость (в часах)		ьную в и	Формы текущего контроля
5.	Системы линейных уравнений. Степенные уравнения. Дифференциальные уравнения	2	4		4	текущий зачет
6.	Анализ временных рядов. Фурье и вейвлетанализ	2	8		4	текущий зачет
7.	Обработка изображений	2	10		6	текущий зачет, итоговый зачет
	Баланс времени:	14 ч	38 ч		20 ч	72 ч

5. НАИМЕНОВАНИЕ И ФОРМЫ ПРОВЕДЕНИЯ ЛАБОРАТОРНЫХ ЗАНЯТИЙ

Данный вид работы не предусмотрен учебным планом.

6. НАИМЕНОВАНИЕ И ФОРМЫ ПРОВЕДЕНИЯ ПРАКТИЧЕСКИХ ЗАНЯТИЙ

№	Наименование работы	Кол-во	Форма
п/п		часов	проведения
1.	Тема 2. Статистика и вероятность. Случайные		разноуровневые
	величины и распределения	4	индивидуальные
			задания, опрос
2.	Тема 3. Теория физических измерений.		разноуровневые
	Систематические и случайные погрешности	4	индивидуальные
			задания, опрос
3.	Тема 4. Теория оценок		разноуровневые
		8	индивидуальные
			задания, опрос
4.	Тема 5. Системы линейных уравнений. Степенные		разноуровневые
	уравнения. Дифференциальные уравнения	4	индивидуальные
			задания, опрос
5.	Тема 6. Анализ временных рядов. Фурье и вейвлет-		разноуровневые
	анализ	8	индивидуальные
			задания, опрос
6.	Тема 7. Обработка изображений		разноуровневые
		10	индивидуальные
		10	задания, опрос
			итоговый зачет
	Баланс времени:	38 ч	

7. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ АСПИРАНТОВ ПО ИЗУЧЕНИЮ ДИСЦИПЛИНЫ

На первом этапе необходимо ознакомиться с рабочей программой дисциплины, в которой рассмотрено содержание тем дисциплины лекционного курса, лабораторных и практических занятий и самостоятельной работы. Для успешного освоения дисциплины, необходимо самостоятельно детально изучить представленные темы по рекомендуемым источникам информации, представленным в п.9 рабочей программы.

8. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО ДИСЦИПЛИНЕ

8.1 ОЦЕНОЧНЫЕ СРЕДСТВА КОНТРОЛЯ УСПЕВАЕМОСТИ

Текущий контроль осуществляется по результатам работы на практических занятиях. Промежуточный контроль – отчеты о выполненных заданиях по каждой теме, отчеты по самостоятельной работе.

Итоговым контролем является итоговый зачет по дисциплине.

Итоговый зачет проводится на завершающем практическом занятии.

•

8.2 ПАСПОРТ ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств, позволяющий оценить уровень сформированности компетенций, представлен следующими компонентами:

Код оцениваемой компетенции	Этап формиро- вания компетен- ции (№ темы)	Тип контроля	Вид контроля	Компонент фонда оценочных средств	Кол-во эл-тов, шт.
УК-1 УК-5	Темы 2-7	текущий	электронный	практическая работа	5
ОПК-1 ПК-3 ПК-4	Темы 1-7	текущий	электронный	индивидуальные задания	7
	Темы 1-7	итоговый зачет	устный	вопросы к зачету	45

8.3 КРИТЕРИИ ОЦЕНИВАНИЯ КОМПЕТЕНЦИЙ

При сдаче итогового зачета по дисциплине отметка *«зачет»* выставляется, если аспирант демонстрирует знание основного материала, излагает его, применяет теоретические положения при решении практических задач.

Отметка «не зачет» выставляется в случае, если аспирант не знает значительной

части программного материала, допускает существенные ошибки в изложении основного материала, не может увязывать теорию с практикой.

8.4 ПЕРЕЧЕНЬ ВОПРОСОВ ДЛЯ ПРОВЕДЕНИЯ ИТОГОВОГО ЗАЧЕТА ПО ДИСЦИПЛИНЕ

- 1. Физические измерения. Представление результатов измерения.
- 2. Виды сигналов. Преобразование сигналов из одного вида в другой.
- 3. Случайные величины. Вероятность. Плотность вероятности.
- 4. Характеристики случайных величин: математическое ожидание, медиана, мода. Свойства этих характеристик.
- 5. Теоремы Чебышёва и Бернулли. Закон больших чисел.
- 6. Моменты случайных величин и их свойства.
- 7. Основные свойства равномерного распределения.
- 8. Основные свойства биномиального распределения.
- 9. Основные свойства распределения Пуассона.
- 10. Основные свойства нормального распределения.
- 11. Основные свойства показательного распределения.
- 12. Ковариация и корреляция.
- 13. Корреляционная функция и ее применение.
- 14. Основные характеристики белого шума. Математический и физический белый шум.
- 15. Виды погрешностей результатов измерения. Определение количества значащих цифр в представлении результата измерения.
- 16. Методика вычисления погрешности результата косвенных измерений.
- 17. Метод наименьших квадратов. Получение аппроксимирующей формулы для линейной функции.
- 18. Теорема Ляпунова и правило «трех сигм».
- 19. Распределение «хи квадрат» и его применение.
- 20. Распределение Стьюдента и его применение.
- 21. Основные положения теории оценок.
- 22. Численные и аналитические методы решения систем линейных уравнений.
- 23. Численные и аналитические методы решения степенных уравнений.
- 24. Основные методы численного интегрирования.
- 25. Основные методы численного дифференцирования.
- 26. Обзор численных методов решения дифференциальных уравнений.
- 27. Метод Рунге-Кутты решения дифференциальных уравнений.
- 28. Основные методы интерполирования функции.
- 29. Преобразования Лапласа.
- 30. Z-преобразования.
- 31. Преобразования Фурье.
- 32. Преобразования Адамара.
- 33. Фурье-анализ.
- 34. Вейвлеты и их свойства.
- 35. Вейвлет-анализ.
- 36. Цифровые изображения и их свойства.
- 37. Преобразования изображений в пространственной области.
- 38. Преобразования гистограммы изображения.
- 39. Преобразования изображений в частотной области.
- 40. Фурье-фильтрация изображений.
- 41. Методы фильтрации шумов на изображениях.
- 42. Методы восстановления изображений.

- 43. Аффинные преобразования изображений.
- 44. Вейвлет-преобразования изображений.
- 45. Основные методы распознавания образов.

8.5 МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ, ОПРЕДЕЛЯЮЩИЕ ПРОЦЕДУРЫ ОЦЕНИВАНИЯ ЗНАНИЙ, УМЕНИЙ, НАВЫКОВ И (ИЛИ) ОПЫТА ДЕЯТЕЛЬНОСТИ, ХАРАКТЕРИЗУЮЩИХ ЭТАПЫ ФОРМИРОВАНИЯ КОМПЕТЕНЦИЙ

Текущий и итоговый контроль работы аспирантов проводится преподавателем, ведущим занятия по дисциплине.

Перед итоговым зачетом по дисциплине аспиранту необходимо полностью выполнить практические работы по дисциплине. При наличии задолженностей по практическим работам аспирант к итоговому зачету не допускается. Итоговый зачет по дисциплине предусмотрен в устной форме. На подготовку к ответу отводится 30минут. При подготовке к ответу аспиранту предоставляется право пользования программой дисциплины.

9. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

9.1 РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

9.1.1 ОСНОВНАЯ ЛИТЕРАТУРА

- 1. Основы теории вероятностей и математической статистики: учебник. / Балдин К.В., Башлыков В.Н., Рукосуев А.В. М.: Флинта: МПСИ, 2010, 487с. Новейшие методы обработки изображений. / Потапов А.А. и др. М.: Физматлит, 2008, 496с.
- 2. Гонсалес Р., Вудс Р., Эддинс С. Цифровая обработка изображений в среде MATLAB.-М.: Техносфера, 2006 - 616с.
- 3. Гмурман В.Е. Теория вероятностей и математическая статистика. Учеб. пособие для вузов.- Изд. 7-е, стер.- М.: Высш. шк., 2001.- 479с.
- 4. Говорухин В., Цибулин В. Компьютер в математическом исследовании. Учебный курс.- СПб.: Питер, 2001.- 624с.
- 5. Сергиенко А.Б. Цифровая обработка сигналов. СПб.: Питер, 2005. 604с.
- 6. Чен К., Джиблин П., Ирвинг А. MATLAB в математических исследованиях: Пер. с англ. М.: Мир, 2001.- 346с.

9.1.2 ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА

- 1. Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы. М.: Высш. шк., 1987.- 630с.
- 2. Кнут Д.Э. Все про TeX./ Пер. с англ. М. В. Лисиной.- Протвино: AO RDTeX, 1993.- 592с.: ил.

- 3. Львовский С.М. Набор и верстка в системе LaTeX.- 3-е изд., исрп. и доп.- М.: МЦНМО, 2003.- 448c.
- 4. Pan G.W. Wavelets in electromagnetic and device modeling.-John Wiley & Sons, Inc., Hobocen, New Jersey, 2003.- 531p.

9.1.3 МЕТОДИЧЕСКАЯ ЛИТЕРАТУРА

9.2 ИНТЕРНЕТ-РЕСУРСЫ

- 1. Сеть ActpoHet: http://www.astronet.ru/db/msg/1169494/index.html#Contents
- 2. База данных по внегалактическим объектам: http://ned.ipac.caltech.edu/
- 3. Астрофизическая информационная система ADS http://adswww.harvard.edu/
- 4. База данных объектов за пределами Солн. с-мы SIMBAD http://simbad.u-strasbg.fr/simbad/
- 5. Звёздный каталог VIZIER http://vizier.u-strasbg.fr/viz-bin/VizieR
- 6. Цифровой обзор неба DSS http://archive.eso.org/dss/dss
- 7. Слоановский цифровой небесный обзор SDSS http://www.sdss.org/

9.3 ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ

- 1. Операционная система: GNU/Linux (LTS дистрибутив Debian, Scientific Linux или же rolling дистрибутив Gentoo, Slackware).
- 2. Пакет символьных вычислений Maxima.
- 3. Комплексный математический пакет Octave.
- 4. Специализированный пакет обработки астрономических изображений MIDAS.
- 5. Библиотеки для построения графиков gnuplot, MathGL.
- 6. Макропакет для оформления научных результатов LaTeX.

9.4 МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

- экран;
- мультимедийный проектор;
- компьютер;
- выход в Интернет и интранет САО РАН в лабораторных корпусах;
- сервер общего доступа для обработки и хранения данных;
- текстовые и электронные ресурсы Научной библиотеки САО РАН;
- оборудование научно-исследовательских лабораторий САО РАН.