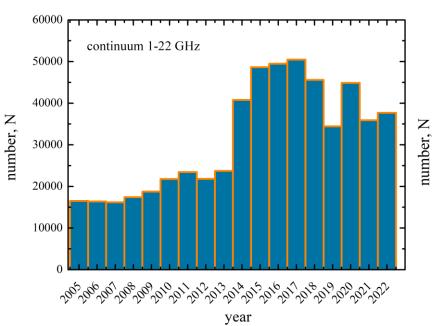
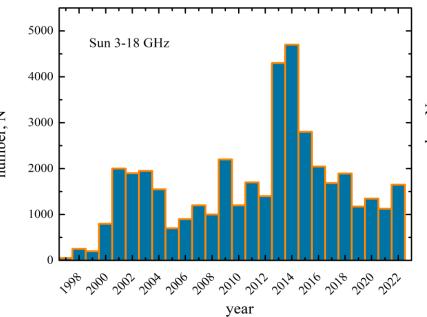


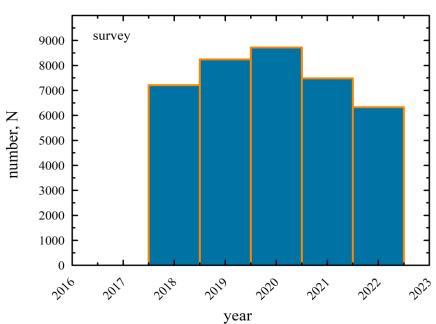
НАБЛЮДАТЕЛЬНЫЕ ПРОГРАММЫ РАТАН-600 2022

Поддержанные наблюдательные заявки									
2014	2015	2016	2017	2018	2019	2020	2021	2022	
29	24	26	36	29	29	30	32	29	

Организации-пользователи								
2014	2015	2016	2017	2018	2019	2020	2021	2022
14	11	13	18	20	20	25	19	31


год	Макс. возм. ч	Фактич. время работы, ч		загрузка телескопа	в интересах третьих лиц
		всего	сторон. польз.		
2014	8784	8022	4600	91%	57%
2015	8760	8054	4228	92%	52%
2016	8784	7992	5415	91%	68%
2017	8231	7973	5230	97%	66%
2018	8760	7812	5602	90%	71%
2019	6445	5968	5009	92%	77%
2020	7404	6864	4805	92%	70%
2021	8760	7632	6309	87%	83%
2022	8760	6802	5154	78%	76%




СТАТИСТИКА 2022

	Континуум 1-22 ГГц (Обл. №1, 2)	ССПК 3-18 ГГц (Обл. №3)	Многолучевой 4.7 ГГц (Обл. №5)
План	41736	1768	6911
Потери	4075 (9.8 %)	120 (6.8 %)	582 (8.4 %)
Погода	3630 (8.7 %)	60 (3.4 %)	572 (8.3 %)
Аппаратура	31 (0.1 %)	2 (0.1 %)	7 (0.1 %)
Антенна	76 (0.2 %)	1 (0.1 %)	0 (0 %)
Прочее	338 (0.8 %)	57 (3.2 %)	3 (0.04 %)

МЕТОДЫ 2022

f ₀	Δf ₀	ΔF	HPBW _x	AR
(GHz)	(GHz)	(mJy/beam)	sec	arcsec
22.3	2.5	70	1.0	11
11.2	1.4	20	1.4	16
8.2	1.0	25	2.0	22
4.7	0.6	5	3.2	36
2.25	0.08	40	7.2	80
1.28	0.06	175	15.4	170

f ₀	Δf ₀	ΔF	HPBW _x	AR
(GHz)	(GHz)	(mJy/beam)	sec	arcsec
22.3	2.5	88	1.5	16.5
11.2	1.0	20	2.0	25
4.8	0.6	11	4.8	50
2.25*	0.08	80	11	121

Методы 1-2: Измерение спектральной плотности потока радиоизлучения космических объектов в диапазоне 1.3-21.7 ГГц на приемно-измерительных комплексах вторичных зеркал №1 и №2 (континуум).

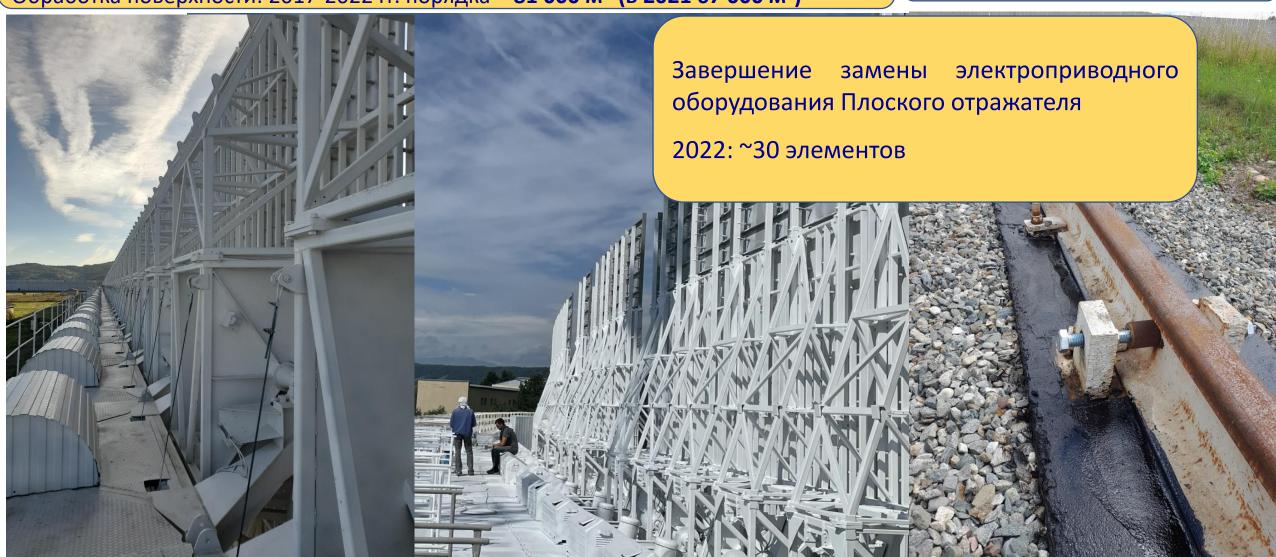
parameters	
frequency range	3.0 - 18 GHz
frequency resolution	80 channels - 100 MHz;
levels	10 channels - 1500 MHz;
time resolution	0.0025 sec ⁻¹
sensitivity by flux	0.01 s.f.u.
density	
dynamic range	> 60 dB

Метод 3: Измерение интенсивности и поляризации радиоизлучения дискретных радиоисточников и Солнца в частотном диапазоне 3-18 ГГц на ССПК-2016 (вторичное зеркало №3).

f _o (GHz)	Δf _o (MHz)	ΔF (mJy/beam	HPBW _x sec	AR arcsec
)		
4.40-4.55	0.15	10	3.2	35
4.55-4.70	0.15	10	3.2	35
4.70-4.85	0.15	10	3.2	35
4.85-5.00	0.15	10	3.2	35

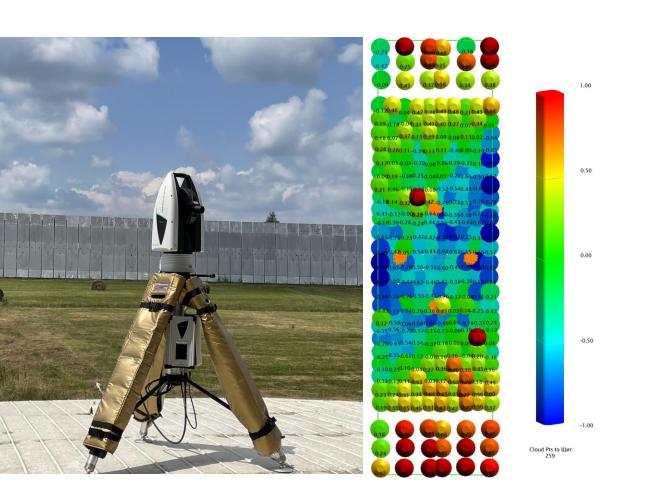
Метод 4: Измерение спектральной плотности потока радиоисточников в диапазоне частот 4.4-5.0 ГГц с высоким временным разрешением (60 µs) на многолучевом спектральном комплексе (вторичное зеркало №5).

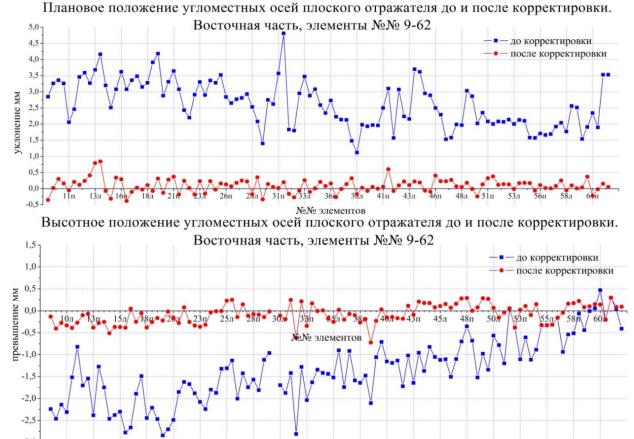
КАПИТАЛЬНЫЙ РЕМОНТ ОБЪЕКТОВ ТЕЛЕСКОПА



Металлоконструкции ГЗ (Южный, Восточный, Плоский):

Общая площадь поверхности металлоконструкций телескопа ~ 110 000 м²

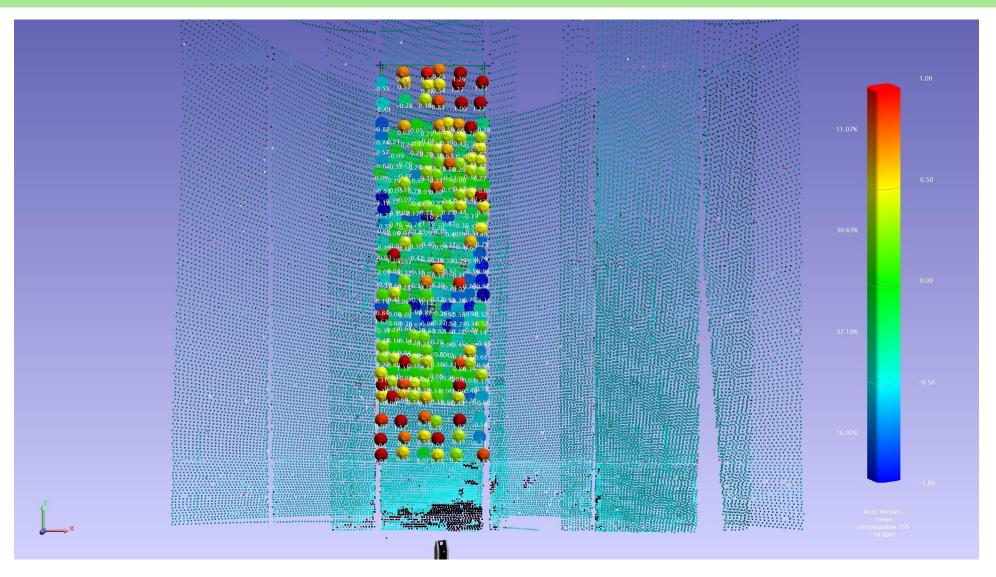

Обработка поверхности: 2017-2022 гг. порядка ~ 81 000 м² (в 2021 67 000 м²)


Рельсовые пути (дуговые)

ГЕОДЕЗИЧЕСКОЕ ОБЕСПЕЧЕНИЕ

- 1. Проверка состояния отражающей поверхности отдельных элементов ГЗ.
- 2. Юстировка планового и высотного положения восточной части Плоского отражателя (завершение 2-х летних работ).
- 3. Разработка методики оперативной проверки состояния отражающей поверхности.
- 4. Метрологическое обеспечение наблюдений на РАТАН-600 (2 плановые юстировки).

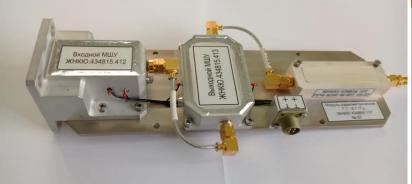
2012, CKO=0.81

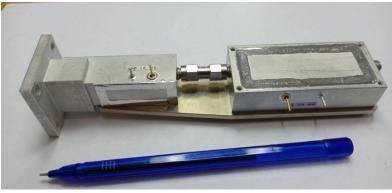

2015, CKO=0.86

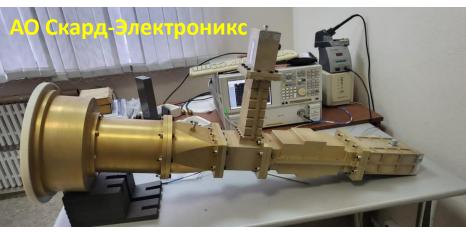
2015, корректировка СКО=0.28 **НЕ ЗАКРЕПЛЕН ДАЛЕЕ**

2017, CKO=0.26

2023, CKO=0.62


ГЕОДЕЗИЧЕСКОЕ ОБЕСПЕЧЕНИЕ




Элементы 257-262 – скан и обработка

ДВУХДИАПАЗОННАЯ РУПОРНАЯ АНТЕННА 1.4 И 2.3 ГГЦ. МОДУЛЬНЫЕ РАДИОМЕТРЫ СМ ДИАПАЗОНА

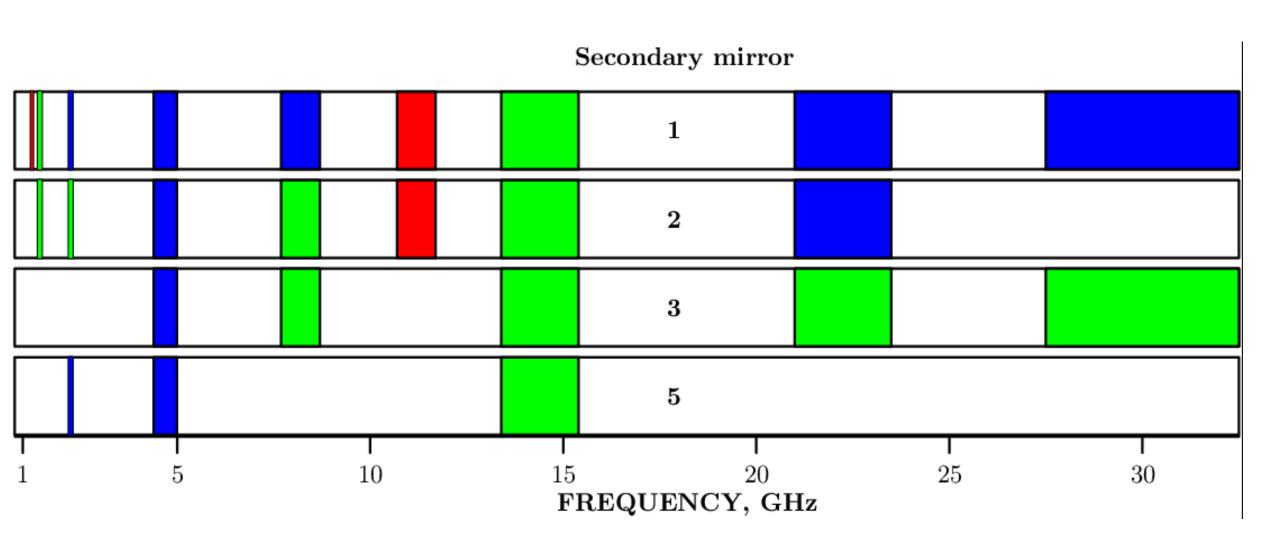
Параметры облучателя

Диапазон 1: 1400-1500 МГц

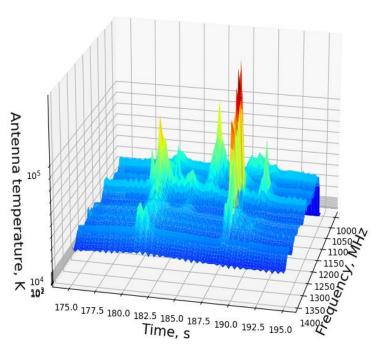
Диапазон 2: 2200-2500 МГц

Ширина ДН по уровню -10дБ: 110 градусов

Поляризация: линейная


минимизация боковых лепестков ДН (не хуже - 17 дБ)

минимизация коэффициента шума (не более 0.5 дБ)

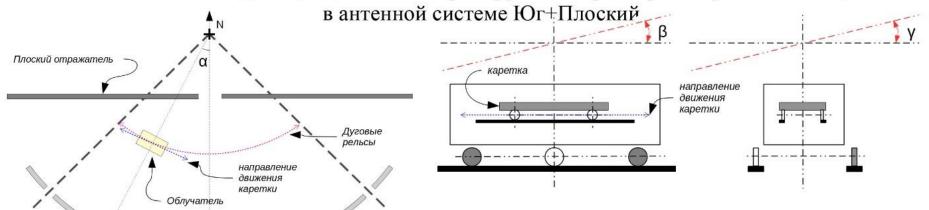

Радиометрические модули диапазонов 8.2 ГГц (сверху), 1.35 см и 1.9 см (снизу). Диапазон 21.0-23.5 ГГц, 13.5-15.5 ГГц, коэффициенты шума 1.3 и 1.2 дБ.

Подготовка двух комплектов 4-канальных приемных устройств: 30 ГГц (Δf =5 ГГц), 22 ГГц (Δf =2.5 ГГц), 14.5 ГГц (Δf =2 ГГц) и 8.2 ГГц (Δf =1 ГГц).

ПРИЕМНЫЕ КОМПЛЕКСЫ РАДИОМЕТРОВ КОНТИНУУМА РАТАН-600

НОВЫЙ РАДИОМЕТР ДЕЦИМЕТРОВОГО ДИАПАЗОНА 1-3 ГГЦ

parameters	
frequency range	1.0 - 18 GHz
frequency	80 channels - 100 MHz;
resolution levels	10 channels - 1500 MHz;
time resolution	0.0025 sec ⁻¹
sensitivity by flux	0.01 s.f.u.
density	
dynamic range	> 60 dB


Метод: Тестовая эксплуатация - Измерение интенсивности и поляризации радиоизлучения дискретных радиоисточников и Солнца в частотном диапазоне 1-18 ГГц на ССПК-2016

Пример регистрации тонкой временной структуры в короне Солнца с чувствительностью до 10⁻³ s.f.u.

Расширение частотного диапазона 1-3 ГГц (1-18 ГГц) Предельное частотное разрешение 10^{-5} (122 кГц, 8196 кан/ГГц) Чувствительность на уровне сигнала спокойного Солнца - 10^{-4} с.е.п. Динамический диапазон 10^9 Максимальное временное разрешение — $8 \cdot 10^{-3}$ сек

МОДЕРНИЗАЦИЯ АСУ ВТОРИЧНОГО ЗЕРКАЛА №3

Схема наблюдений, основные контролируемые параметры облучателя тип 3,

Круговой отражатель

Контролируемые параметры:

- уклон облучателя от горизонтали β
- уклон облучателя от горизонтали ү
- скорость облучателя
- положение облучателя
- положение каретки
- скорость движения каретки

Режимы наблюдений:

- режим с предустановкой (штатный)
- слежение со сканированием
- слежение за заданной координатой

Реализация режима слежения на РАТАН-600 расширяет возможности инструмента для исследования динамики активных областей на Солнце и накопления сигнала в задачах, требующих высокой чувствительности.

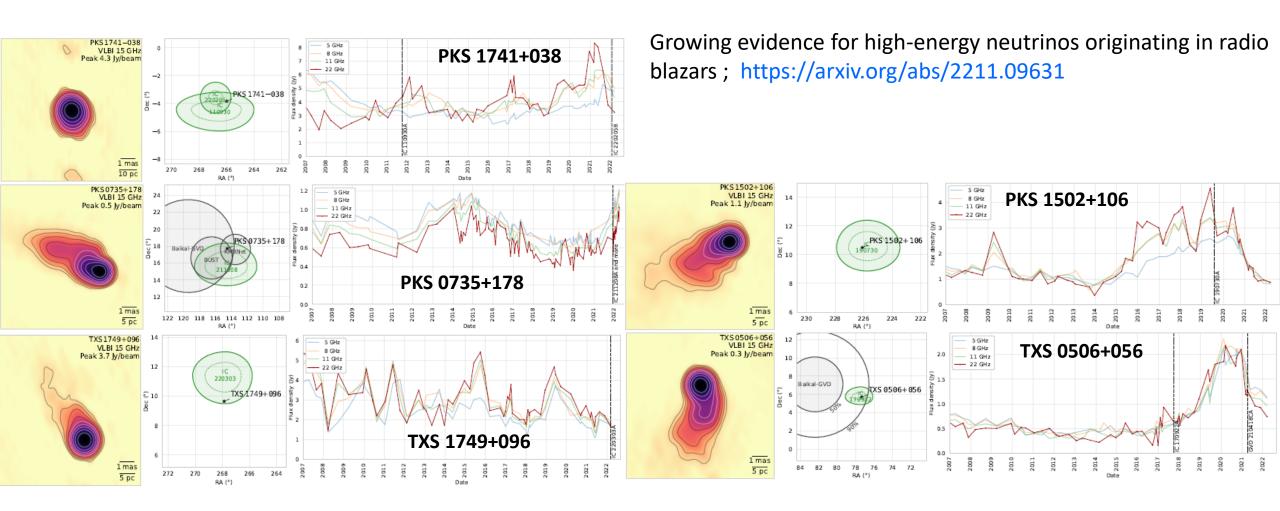
НАБЛЮДАТЕЛЬНЫЕ ПРОГРАММЫ 2022

Внегалактические:

- 1. Многочастотный мониторинг переменности блазаров на длительных временных масштабах, (ШАО Китайской АН, Китай).
- 2. Исследование радиогалактик FRO (CAO PAH, PФ).
- 3. Мониторинг SRGE J170245.3+130104 самого мощного рентгеновского квазара на z>5 (ИКИ РАН, РФ).
- 4. Радиоспектры и переменность квазаров на z>4 (CAO PAH, INFIP, Аргентина).
- 5. Радиосвойства гидроксильных мегамазеров ОНМ (Университет Гуйчжоу, Китай).
- 6. Исследование радиосвойств галактик на z>3 (CAO PAH).
- 7. IceCube триггер: ежемесячный мониторинг на РАТАН-600 активных галактик новых кандидатов в источники нейтрино высоких энергий (ИЯИ РАН, РФ).
- 8. РАТАН-600 в многоканальной астрономии: полная выборка РСДБ-компактных струй в ядрах галактик как индикаторов нейтрино высоких энергий (АКЦ ФИАН, МФТИ, РФ).

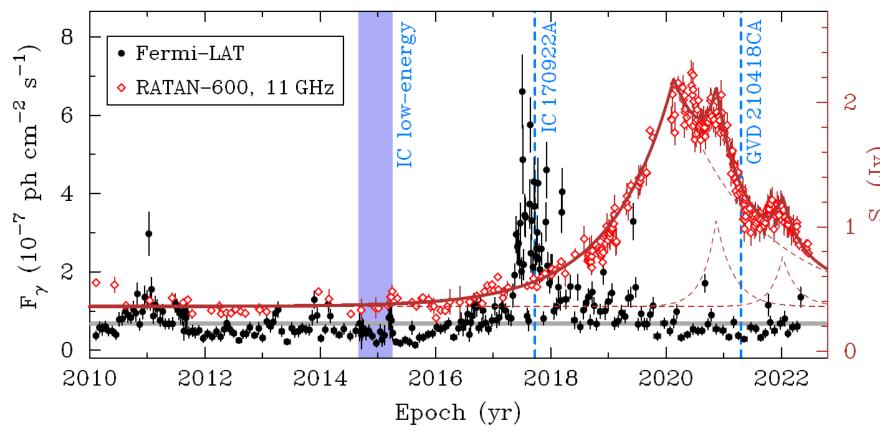
Галактические:

- 9. Мониторинг микроквазаров галактических рентгеновских двойных звезд со струйными выбросами (CAO PAH, ICRANet, Italy, INAF-IAPS Italy, SAO, USA, Finnish Centre for Astronomy with ESO FINCA, Curtin U. Australia).
- **10**. Поиск быстрых радиовсплесков* (САО РАН, РФ).

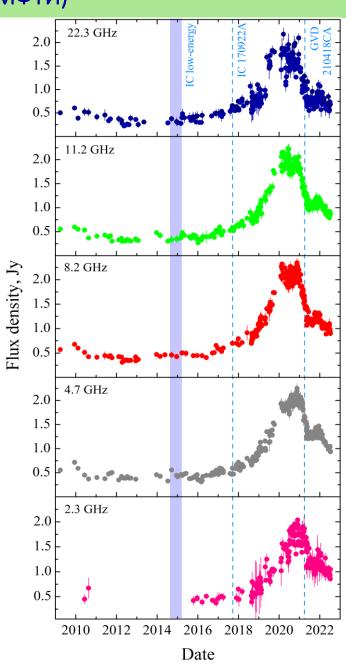

Солнце:

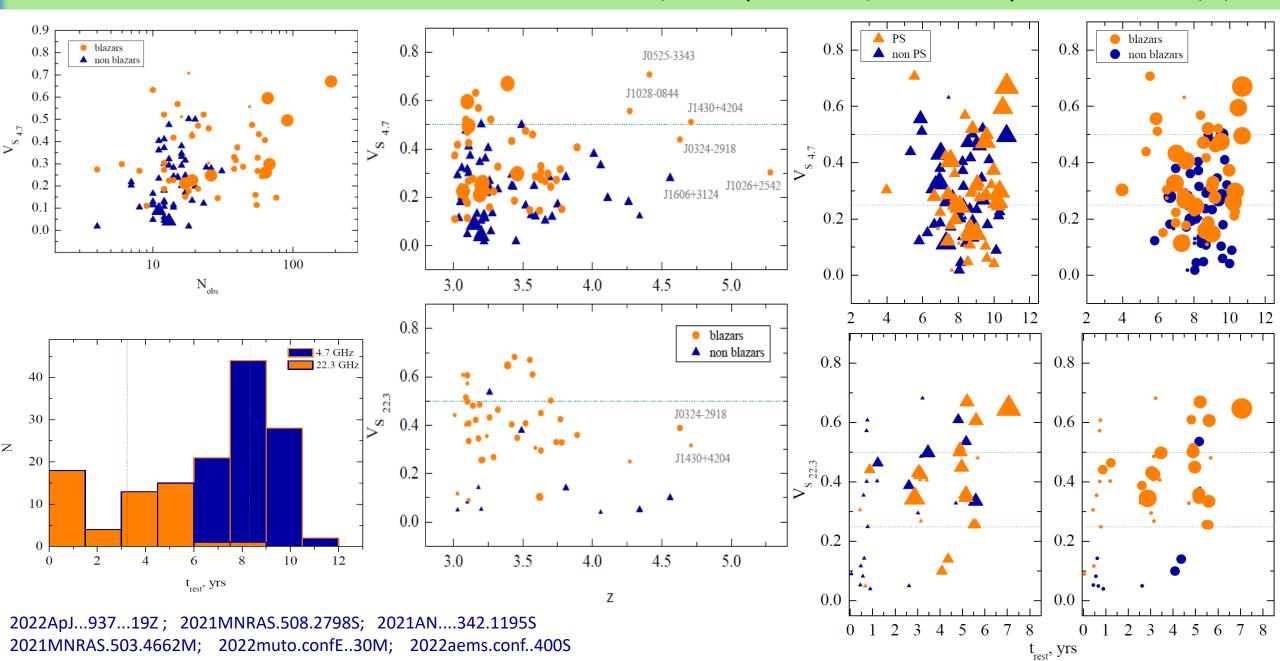
- 11. Исследование вспышечных плазменных структур в дециметровом диапазоне с новыми техническими возможностями РАТАН-600 (САО РАН, РФ);
- **12**. Пополнение каталога горячих плазменных струй в короне Солнца (САО РАН, РФ);
- **13**. Исследование сверхслабой солнечной активности на микроволнах (ИСЗФ СО РАН, РФ);
- **14**. Развитие методов определения физических условий в активных областях на Солнце (СПбГУ, РФ);
- 15. Совместные исследования хромосферы и переходной области солнечных пятен на интерферометре ALMA и PATAH-600 (Технологический Институт Нью-Джерси, США).
- 16. Корреляционный анализ между предвспышечным сигналом Call K и радиовспышками (CAO PAH, КГУ)

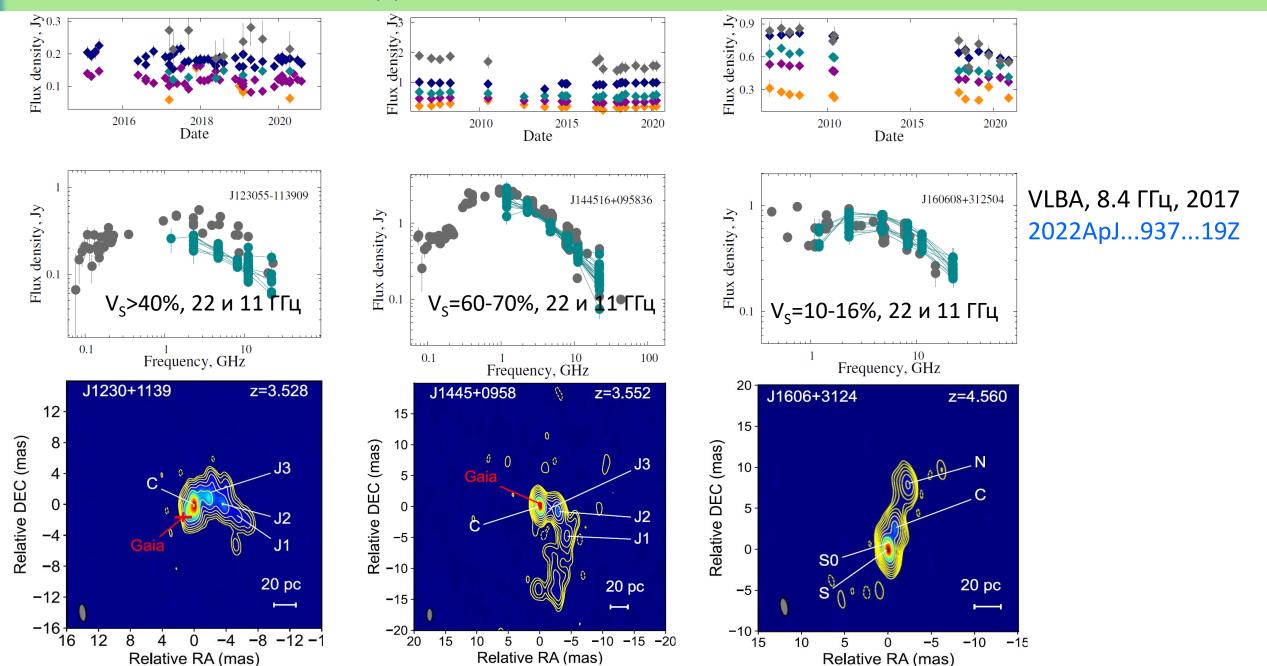
Аппаратурно-методические:


17. Позиционирование вторичного зеркала №3 (САО РАН, РФ).

IceCube триггер: ежемесячный мониторинг на РАТАН-600 ... (ИЯИ РАН) РАТАН-600 в многоканальной астрономии ... (АКЦ ФИАН, МФТИ)


Некоторые блазары, ассоциированные с событиями нейтрино IceCube


IceCube ТРИГГЕР: (ИЯИ РАН) РАТАН-600 В МНОГОКАНАЛЬНОЙ АСТРОНОМИИ: (АКЦ ФИАН, МФТИ)


High-energy neutrino-induced cascade from the direction of the flaring radio blazar TXS 0506+056 observed by the Baikal Gigaton Volume Detector, 2022, Nature Astronomy, https://arxiv.org/pdf/2210.01650.pdf.

$$\Delta S(t) = \begin{cases} \Delta S_{\rm max} e^{(t-t_{\rm max})/\tau}, & t < t_{\rm max} \\ \Delta S_{\rm max} e^{(t_{\rm max}-t)/1.3\tau}, & t > t_{\rm max} \end{cases}$$
 Valtaoja et al. 1999
Hovatta et al. 2009

РАДИОСПЕКТРЫ БЛАЗАРОВ НА Z>3. GPS/MPS

Telescope

VLA

VLA

GMRT

ASKAP

ASKAP

GMRT

GMRT

(MHz)

(3)

3000

3000

1383

888

888

607

321

Obs-date

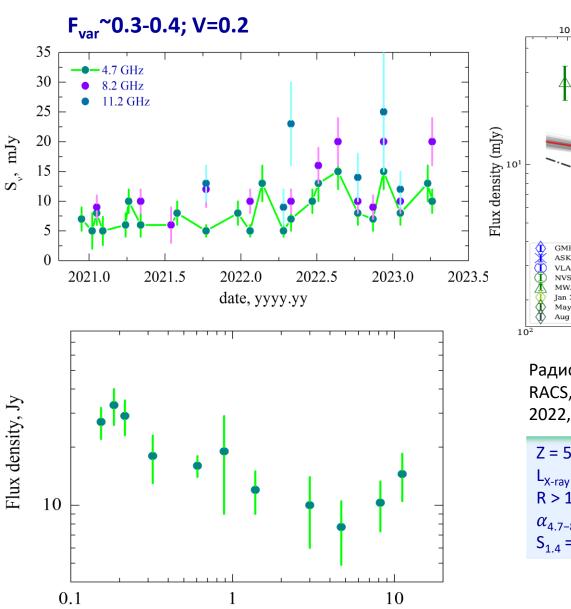
(yyyy-mm-dd)

(1)

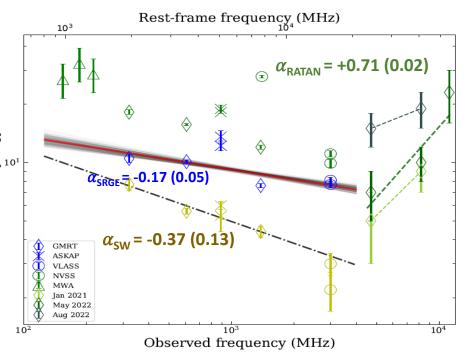
2019-04-02

2021-10-02

2021-06-07


2019-04-24

2020-05-01


2021-05-30

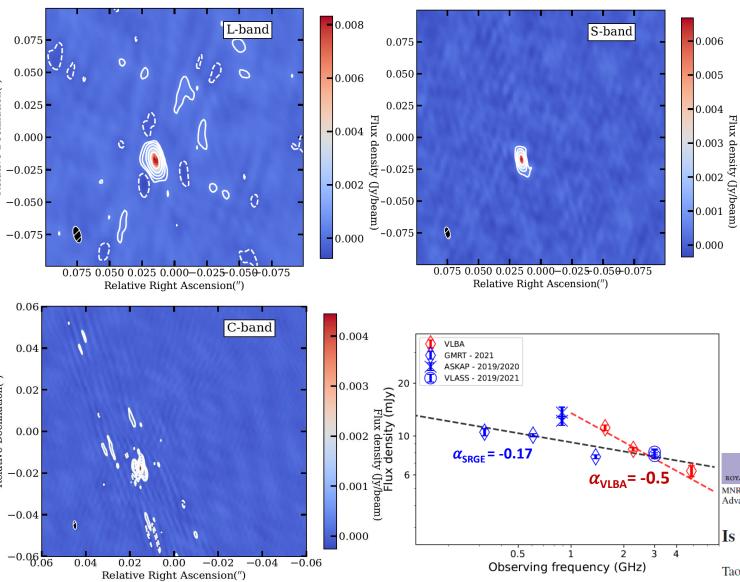
2021-05-28

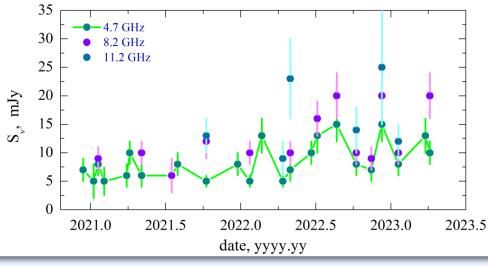
SRGE J170245.3+130104 - САМЫЙ МОЩНЫЙ РЕНТГЕНОВСКИЙ КВАЗАР НА Z>5 (ИКИ РАН)

Observed frequency, GHz

Радиоспектр J1702+13: MWA, GLEAM-X, GMRT, ASKAP RACS, VLA, NVSS and VLASS, and RATAN-600 (An et al. 2022, MNRAS).

Z = 5.466±0.003 (BTA, SCORPIO)	
$L_{X-ray} = 3.6 \times 10^{46} \text{ erg/s (2-10 кэB)}$	
R > 1100 (new)	
$lpha_{ m 4.7-8.2}$ = +0.71 (0.02), $S \sim u^{lpha}$	
$S_{1.4} = 26\pm0.9$ mJy (Condon et al., 1998).	


)4	2018-03-13 MWA	216	
	2018-03-13 MWA	185	
AP	2018-03-13 MWA	154	
al.	CMDT 1202 MUS	7	7
	GMRT 1383 MHz Date: 2021-06-07	6	5
13°01'30"	Peak=7.3 mJy/beam rms=0.13 mJy/beam	5	5
		2	4 8
00"	J1702+1301	-3	+ 604/2/00
		2	2
00'30"	⊚ WISE J1702+1300	1	L
		C)
6Hz	17 ^h 02 ^m 48 ^s 46 ^s 44 ^s 42	2s	-1


uGMRT, 1.4 GHz

Dec

https://doi.org/10.1093/mnras/stac3774

SRGE J170245.3+130104

Новые измерения

РАТАН 2022: с сентября спектр растущий, излучение детектируется на трех частотах (4.7, 8.2, 11.2 ГГц). **VLBA, Dec 2021**

Dec 6, 1.5 GHz, 11.4 mJy

Dec 7, 2.3 GHz, 8.4 mJy

Dec 21, 4.9 GHz, 6.4 mJy

EVN Proposal 2023; YEBES Proposal 2023

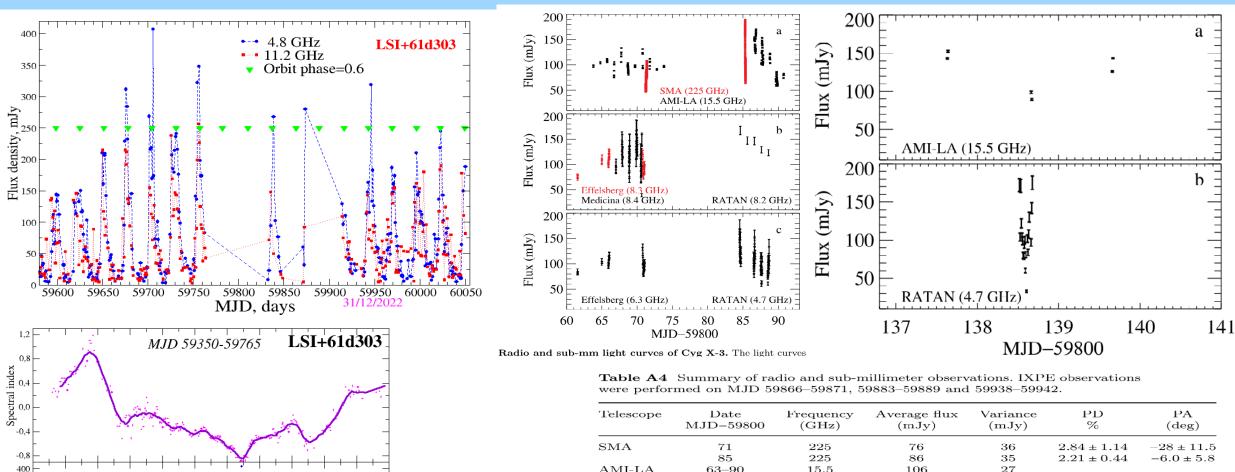
Monthly Notices

office

ROYAL ASTRONOMICAL SOCIETY

MNRAS 519, 4047–4055 (2023)

Advance Access publication 2022 December 22


Is the X-ray bright z = 5.5 quasar SRGE J170245.3+130104 a blazar?

Tao An , 1,2 * Ailing Wang , 1,2 Yuanqi Liu, 1 Yulia Sotnikova, 3 Yingkang Zhang , 1

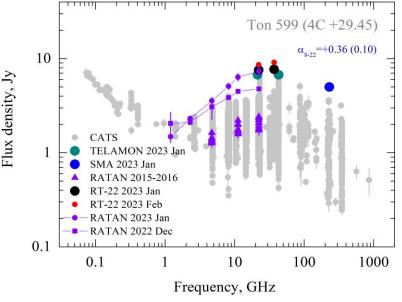
J. N. H. S. Aditya , 4,5 Sumit Jaiswal, 1 George Khorunzhev, 6 Baoqiang Lao, 1,7 Ruqiu Lin , 1,2

Alexander Mikhailov, 3 Marat Mingaliev, 3,8,9 Timur Mufakharov , 3,8 and Sergey Sazonov , 1

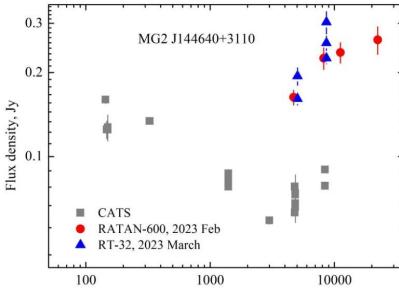
Микроквазары LSI+61d303, Cyg X-3

Flux density, mJy

0.2


0,6

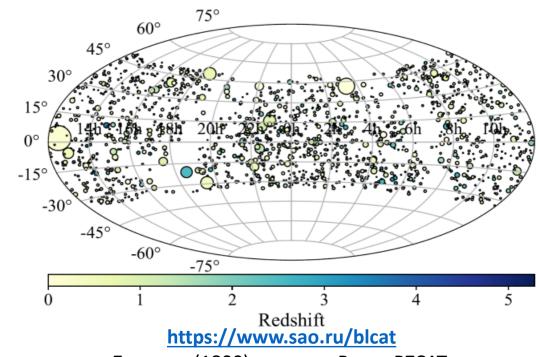
Phase of orbital period


AMI-LA 15.5 27 63 - 90106 137 - 13915.5126 Medicina 66 - 708.4118 Effelsberg 61 - 708.3 99 Effelsberg 61 - 706.399 8.2 14215 RATAN 84 - 884.7106 24 107 36 1384.7uGMRT85-86

Работа при участии 130 ученых из 20 стран подана в апреле 2023 г. в Nature Astronomy: https://arxiv.org/abs/2303.01174: Astronomical puzzle Cyg X-3 is a hidden Galactic ultraluminous X-ray source.

МНОГОЧАСТОТНЫЙ МОНИТОРИНГ ПЕРЕМЕННОСТИ БЛАЗАРОВ

ATel #15894: 1-37 GHz quasi-simultaneous spectrum of the blazar Ton 599 during its greatest radio flare



Frequency, MHz

ATel #15948:

Simultaneous radio spectrum of MG2 J144640+3110 after its gamma-ray activity

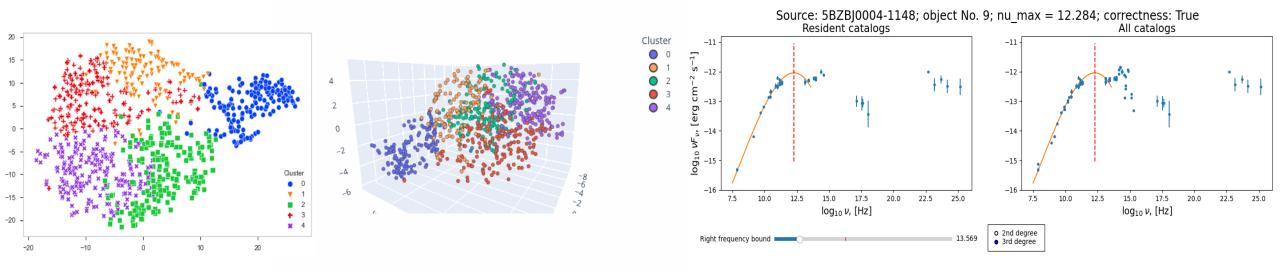
RATAN-600 multi-frequency catalogue of BL Lac objects

Блазары (1800) каталога Roma-BZCAT: $S_{1.4} > 100 \; \text{mJy, -35}^\circ < \text{Dec} < 45^\circ.$

ПУБЛИКАЦИИ

2022AstBu..77..361S (1); 2014A&A...572A..59M (22)

arXiv:2210.02547, 2022; 2020MNRAS.492.3829L (32)

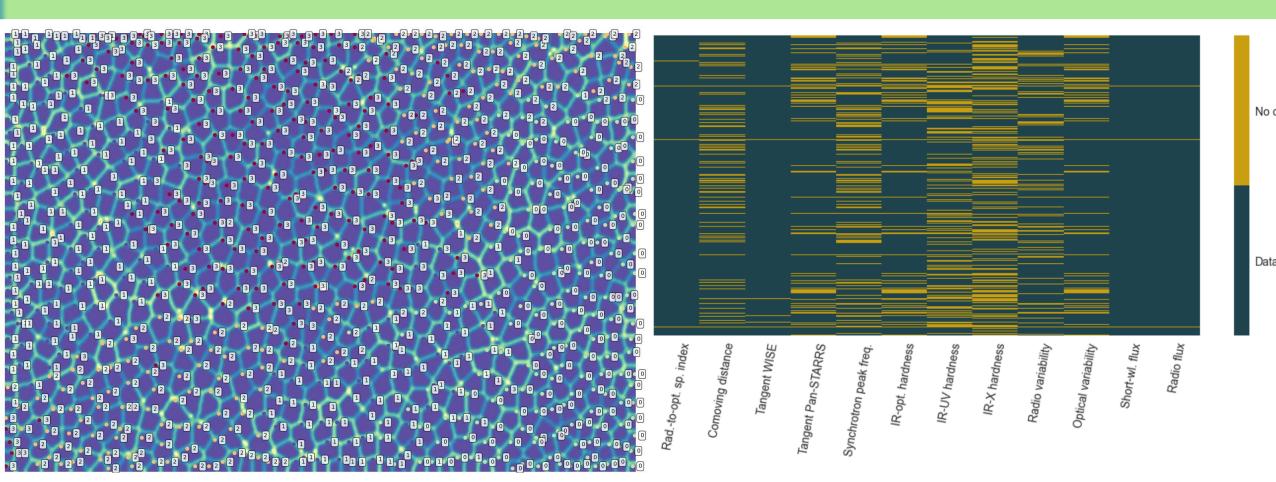

2020JHEAp..26...45T (5); 2019MNRAS.490.5300D (13)

Заявка на патент №2022132141 от 08.12.22.

Свидетельство №2021621910 от 2021; №2021664046 от 2021;

№2020622676 ot 16.12.2020

КЛАСТЕРНЫЙ АНАЛИЗ БЛАЗАРОВ КАТАЛОГА BZCAT



2D и 3D-визуализации кластеров, полученных в многомерном пространстве признаков: однородное «облако» объектов с некоторым выделением кластера 0 (синий) — BL Lacs и galaxy-dominated BL Lacs

На основе данных многоволновых наблюдений (радио, ИК, оптические, рентгеновские потоки и их отношения, радио и оптическая переменности, форма SED и частота пика синхротронной компоненты) методами машинного обучения проведена кластеризация блазаров каталога Roma BZCAT с целью выделения групп относительно схожих объектов и их последующего анализа. В качестве пространства признаков для проведения кластеризации взято максимально доступное количество наблюдаемых характеристик. Выделены пять групп объектов с отличающимися распределениями признаков, есть частичное соответствие с классификацией BZCAT. Результат воспроизводится с помощью различных алгоритмов кластеризации (k-means, Self Organizing Maps).

	Cluster	BL Lac	BL Lac cand.	Galaxy dominated	FSRQ	Uncertain type
BL Lacs	0	590	56	232	19	30
types	1	126	4	15	191	48
d ty	2	129	14	10	373	44
Mixed	3	183	15	16	427	73
FSRQs	4	31	3	1	899	32
	All	1059	92	274	1909	227

Сравнение с типами BZCAT, кластеры 0 и 4 соответствуют BL Lacs и FSRQs соответственно, в других кластерах — смесь типов. Внутренняя точность отнесения объекта к кластеру ~90%

Пример карты расстояний между нейронами (u-matrix) для исследуемой выборки, с метками кластеров, полученными методом 1.

ДОПОЛНИТЕЛЬНЫЕ СВЕДЕНИЯ О ДЕЯТЕЛЬНОСТИ УНУ В 2022

Штатная численность сотрудников, обслуживающих РАТАН-600	137 (42 – н.р.)
Количество публикаций, подготовленных с использованием РАТАН-600	38
Количество РИД, полученных в ходе работ, проведенных с использованием РАТАН-600	1
Количество защищенных кандидатских диссертаций, подготовленных с использованием РАТАН-600	2
Внебюджетные программы финансирования (гранты, договоры)	5
НИР, выполненные с использованием РАТАН-600	4

Научно-технологическая инфраструктура Российской Федерации

ЗАКЛЮЧЕНИЕ

технические достижения:

- Внедрение модульных радиометров диапазонов 22, 14 и 8 ГГц. Новый радиометр в составе ССПК-2016 (1-3 ГГц).
- Модернизация АСУ вторичного зеркала №3.
- Развитие методов 3D сканирования антенны телескопа в безотражательном режиме.
- Развитие приборной базы РАТАН-600 (2019-2023).
- Программа капитального ремонта телескопа.

НАУЧНЫЕ:

• Новые совместные программы: high-z AGN, FRO, OHM, кандидаты во внегалактические источники нейтрино СЭ.

ПОДДЕРЖКА И РАЗВИТИЕ БД И ЭЛЕКТРОННЫХ КАТАЛОГОВ РАТАН-600:

- Многочастотный каталог блазаров BLcat www.sao.ru/blcat.
- Радиоастрономический центр прогноза солнечной активности https://www.sao.ru/Doc-en/sunimg.html
- Каталог горячих струй на Солнце http://spbf.sao.ru/coronal-jets-catalog.

МИНУСЫ РАБОТЫ 2022:

- Неблагоприятная помеховая обстановка почти во всем диапазоне.
- Выделение значительного антенного времени на капитальный ремонт (2-3 месяца).
- Капитальный ремонт кабельных сетей Северного сектора.
- Субсидия на капитальный ремонт 2023 г. ?.