УДК 524.31.01:520.84

СВЕРХБЫСТРАЯ ПЕРЕМЕННОСТЬ ПРОФИЛЕЙ ЛИНИЙ В СПЕКТРАХ ОВА-ЗВЕЗД: В1-ЗВЕЗДА *р* Leo

© 2018 А. Ф. Холтыгин^{1,2*}, А. А. Батраков¹, С. Н. Фабрика³, А. Ф. Валеев³, И. М. Туманова¹, О. А. Циопа⁴

¹Санкт-Петербургский государственный университет, Санкт-Петербург, 198504 Россия ²Институт астрономии РАН, Москва, 119017 Россия

³Специальная астрофизическая обсерватория РАН, Нижний Архыз, 369167 Россия

⁴Главная (Пулковская) астрономическая обсерватория РАН, Санкт-Петербург, 196140 Россия

Поступила в редакцию 26 апреля 2018 года; принята в печать 3 августа 2018 года

Настоящая работа является продолжением исследований сверхбыстрой переменности профилей линий в спектрах звезд ранних спектральных классов. Мы исследовали переменность профилей линий в спектре OBA-звезд с многорежимным фокальным редуктором SCORPIO на 6-м телескопе BTA. Обнаружены короткопериодические регулярные вариации линий H и He в спектрах звезды B1I звезды ρ Leo с периодами от 2 до 90 минут и нерегулярные вариации профилей линий на промежутке времени менее 1 минуты. Обсуждается возможное происхождение быстрых спектральных вариаций.

Ключевые слова: звезды: ранние типы — звезды: индивидуальные: р Leo

1. ВВЕДЕНИЕ

Профили линий в спектрах OBA-звезд переменны на временных шкалах от дней до часов [1-3]. Вариации профилей на минутных шкалах до последнего времени не были исследованы. В 2014 г. Хубриг и др. [4] обнаружили изменения профилей линий SiII и FeII в спектрах A0-сверхгиганта HD 92207 на промежутках 1-2 минуты.

Эта работа стала триггером наших исследований сверхбыстрой переменности на минутных шкалах в спектрах звезд ранних классов. Чтобы проверить, широко ли распространены короткопериодические спектральные вариации среди OBA-звезд, мы проанализировали вариации профилей линий в спектрах ряда OBA-звезд, полученных с высоким (минута и меньше) временным разрешением при использовании редуктора светосилы 6-м телескопа БТА SCORPIO [5]. В работе [6] представлены результаты анализа сверхбыстрой переменности в спектре звезды HD 93521 (O9.5III) по наблюдениям на БТА в 2015 г. Были обнаружены регулярные вариации с периодами 4–5 и 32–36 минут.

В настоящей работе представлены результаты поиска быстрых вариаций в спектрах медленно вращающегося [7] сверхгиганта ρ Leo (BIa). Звезда

 ρ Leo уже наблюдалась нами на БТА в январефеврале 2004 г. и на 1.8-м телескопе Бохинсанской оптической астрономической обсерватории (Южная Корея) [8]. Получено 47 спектров звезды с высоким временным разрешением (4—10 мин), отношением S/N от 300 до 700 и спектральным разрешением от 45 000 до 60 000. Обнаружена переменность профилей линий H I, He I, Si II, Si III и N II. Найдены регулярные компоненты переменности профилей линий с периодами от 3^h8 до 1^d8. Сделан вывод о том, что переменность профилей связана с их вращательной модуляцией и нерадиальными фотосферными пульсациями (Non-Radial Pulsations, NRP).

Звезда ρ Leo включена в программу исследования магнитных полей ярких звезд северного неба [9, 10]. В 2005 г. были выполнены наблюдения ρ Leo на БТА с использованием спектрографов NES и ОЗСП с анализатором круговой поляризации [8]. Было обнаружено умеренное магнитное поле, которое может быть описано в модели вращающегося магнитного диполя с напряженность на полюсах 240 ± 50 Гс и углом наклона оси диполя к оси вращения 59° ± 30°.

В настоящей статье анализируются наблюдения ρ Leo на БТА с фокальным редуктором SCORPIO со сверхвысоким временным разрешением 6 секунд.

^{*}E-mail: afkholtygin@gmail.com

В разделе 2 даны основные сведения о звезде и описаны наблюдения и обработка спектров. Вариации профилей линий проанализированы в разделе 3. В разделе 4 обсуждаются результаты анализа переменности профилей. Выводы даны в разделе 5.

2. ОСНОВНЫЕ СВЕДЕНИЯ ОБ ОБЪЕКТЕ, НАБЛЮДЕНИЯ и ОБРАБОТКА СПЕКТРОВ

Сверхгигант ρ Leo (HD 91316) является относительно медленно вращающейся звездой спектрального класса B1 Iab. Эффективная температура звезды $T_{\rm eff}$ определяется неуверенно: Morel et al. [11] на основе информации о спектральном подклассе приводят значение $T_{\rm eff} = 20\,260$ K, в статье Gies et al. [12] по величине бальмеровского скачка и из сравнения профилей водородных линий с модельными указывают значение 24 200 K. В результате моделирования спектра звезды с учетом вклада в профили ветра звезды (Crowther et al. [13]) получено значение $T_{\rm eff} = 22\,000$ K.

Звезда ρ Leo на диаграмме ГР находится в области переменных звезд типа β Сер ранних подклассов спектрального класса В (см., например, [14]). Параметры звезды представлены в таблице 1: $T_{\rm eff}$ — эффективная температура звезды, M — масса звезды, \dot{M} — темп потери массы звездой, L — болометрическая светимость, V_{∞} — терминальная скорость звездного ветра, $V \sin i$ — скорость вращения звезды, $P_{\rm rot}$ — период вращения. В фигурных скобках приведено содержание элементов в логарифмической шкале.

Наблюдения на БТА проводились 19/20 января 2015 г. со светосильным спектрографом SCORPIO. Спектральное разрешение составляло 2000 (размер щели 0"5), диапазон длин волн 4050–5830 Å, $S/N \approx 2000$. Был получен 1271 спектр звезды. При экспозиции одного спектра от 1 до 2 секунд полное время с учетом считывания ССD составляло 6 секунд. Обработка спектральных данных была выполнена с помощью пакета MIDAS.

На рис. 1 показан нормированный на континуум участок спектра звезды ρ Leo в области $\lambda\lambda$ 4074—5795, усредненный по 1271 наблюдению на SCORPIO.

3. ВАРИАЦИИ ПРОФИЛЕЙ ЛИНИЙ

На рис. 2 показаны вариации профилей линий $H\gamma$ и $H\beta$ в спектре ρ Leo. Видно, что переменность профилей линий прослеживается не только для самих линий, но и для бленд линий на профиле линии H_{γ} . Профили линии $H\beta$, полученные через

Таблица 1. Параметры *р* Leo

Параметр	Значение	Ссылка
$T_{ m eff},$ K	24200	[12]
$\lg g$	3.09	[12]
M/M_{\odot}	22	[11]
R/R_{\odot}	37.4	[13]
V_{∞}	1110	[13, 15]
$-\lg \dot{M}/M_{\odot}$	-6.20	[11]
$\lg L/L_{\odot}$	5.18	[11]
$V \sin i$, км с $^{-1}$	49	[16]
$P_{\rm rot}$, сут.	26.8	[7]
{C}	7.5	[13]
{N}	8.3	[13]
{O}	8.4	[13]

1332 и 1338 секунд после начала наблюдений (выделены штрих-пунктирными линиями) проходят на 2–4% выше (в единицах потока в континууме), чем остальные профили линий. Такое же превышение потока обнаружено для профилей линии HeI 4471. Для профилей линий Hδ и Hβ превышение потока на временах 1332 и 1338 секунд также присутствует, но амплитуда его меньше, чем для линии Hβ.

Наличие подобных профилей в спектре ρ Leo, существенно отклоняющихся от среднего, может быть свидетельством их нерегулярных вариаций на секундной шкале времени. Такие вариации могут быть связаны с высвечиванием горячего газа в неоднородностях звездного ветра после прохождения по ним ударной волны [17].

3.1. Регулярные вариации профилей линий

Для поиска регулярных компонентов вариаций профилей определим разностные профили линий. Пусть в результате проведенных наблюдений получено N спектров исследуемого объекта. Обозначим через $F_i(\lambda), i = 1, ..., N$ — нормированный на континуум поток в *i*-м спектре звезды на длине волны λ . Пусть $\overline{F}_i(\lambda)$ — средний по всем наблюдениям поток на длине волны λ . Тогда разностный профиль линии

$$d(\lambda) = F_i(\lambda) - \overline{F}_i(\lambda). \tag{1}$$

При анализе разностных профилей удобнее использовать вместо длины волны доплеровские смещения V от лабораторной длины волны λ_0 линии $V = c(\lambda/\lambda_0 - 1)$, где c — скорость света.

Рис. 1. Средний спектр *р* Leo

Рис. 2. Профили линий Н γ и Н β (сверху вниз) 1271 спектра ρ Leo. Отмечены бленды линии Н γ . Толстая светлая пунктирная линия — средний профиль линии. Штрих-пунктирными линиями отмечены профили линии Н β , полученные через 1332 и 1338 с после начала наблюдений.

При использовании спектров существенно разного качества следует при расчете среднего и разностных профилей линий использовать разные веса профилей g_i , пропорциональные квадрату от-

Рис. 3. Динамический спектр вариаций профиля линии Н*β*.

ношения S/N в области континуума вблизи линии. Однако, так как во всех анализируемых нами профилях отношения S/N близки, можно положить $g_i = 1$.

На рис. З представлен динамический спектр вариаций профилей линии Н β в спектре ρ Leo. Видны регулярные изменения профилей линий со временем. Присутствуют как вариации на шкале времени порядка 20–30 минут, так и быстрые вариации на минутной шкале.

Для поиска регулярных компонентов вариации профилей линий в спектре ρ Leo нами был выполнен их Фурье-анализ методом CLEAN [18].

Фурье-спектры вариаций разностных профилей линий He I 4471 и Н β (периодограммы) представ-

Рис. 4. Фурье-спектр спектр вариаций профиля линий He I 4471 (а) и H β (b).

лены на рис. 4. В Фурье-спектрах видны регулярные компоненты с частотами $\nu_1 = 0.031 \text{ мин}^{-1}$ ($P \sim 33 \text{ мин}$) и $\nu_2 = 0.014 \text{ мин}^{-1}$ ($P \sim 88 \text{ мин}$). Такие же пики обнаружены нами в Фурье-спектрах других линий бальмеровской серии водорода и линий He I.

Кроме того, в Фурье-спектрах вариаций профилей линий H и He виден сильный пик на частоте $\nu_0 = 0.0045$ мин⁻¹. Соответствующий период $P_0 \approx 220$ минут (3^h7) больше полного времени наблюдения 128 минут, поэтому для подтверждения реальности этого компонента вариации профилей нужны дополнительные наблюдения.

Период P_0 близок к периоду $P_{10} = 3.8 \pm 0.1$, обнаруженному при анализе вариаций профилей

линий в спектре *р* Leo по наблюдениям на БТА и 1.8-м телескопе Бохинсанской оптической астрономической обсерватории в 2004 г. [19].

Этот факт может свидетельствовать в пользу предположения о том, что обнаруженные нами частоты (периоды) регулярных вариаций профилей линий ρ Leo являются продолжением частот (периодов) вариаций, найденных по наблюдениям 2004 г., в область коротких периодов.

3.1.1. Оконное Фурье-преобразование

Проведенный нами анализ временных рядов вариаций профилей различных линий в спектре ρ Leo показал, что, хотя в динамических спектрах вариаций профилей линий отчетливо видны быстрые изменения профилей на шкалах 1—3 минуты, при построении периодограммы для всех спектров звезды в Фурье-спектре вариаций профилей линии обнаруживаются только регулярные компоненты с периодами больше 30 минут.

В то же время при анализе отрезков этих временных рядов в Фурье-спектрах находятся короткопериодические компоненты. По этой причине мы использовали для поиска короткопериодических компонент вариаций профилей оконное преобразование Фурье (см., например, [20]):

$$F(t_0,\nu) = \int_{-\infty}^{\infty} f(t_0) W(t_0 - \tau) e^{-i2\pi\nu\tau} d\tau, \qquad (2)$$

где W(t) — оконная функция. В дальнейшем будем использовать прямоугольное окно переменной ширины: $W(t) = W_{t_0,\Delta T}(t) = 1$ при $t \in [t_0, t_0 + \Delta T]$ и W(t) = 0 для всех остальных значений t.

При таком выборе оконной функции использование оконного преобразования Фурье эквивалентно применению Фурье-преобразования к отрезку ряда со значениями в промежутке $[t_0, t_0 + \Delta T]$. Получаемый в результате применения оконного преобразования Фурье-спектр зависит от трех параметров: частоты ν , t_0 — начала окна и ΔT — ширины окна для каждого из значений V — доплеровского смещения от центральной длины волны линии.

Для полного профиля линии профиля мы имеем функцию четырех переменных:

$$F(t_0, \nu) = F(t_0, \Delta T, \nu, V).$$
 (3)

Такую функцию весьма сложно анализировать, поэтому мы просуммировали значения указанной функции для всех доплеровских смещений *V* в пределах профиля линии:

$$\overline{F}(t_0, \Delta T, \nu) = \sum_{k=1}^{M} F(t_0, \Delta T, \nu, V_k), \qquad (4)$$

где суммирование выполнено для всех M значений V внутри профиля соответствующей линии.

При фиксированном значении ΔT (ширины окна) функция

$$\overline{F}(t_0, \Delta T, \nu) = \overline{F}_{\Delta T}(t_0, \nu)$$

становится функцией только двух параметров, t_0 и ν . Анализ результатов применения оконного преобразования Фурье к вариациям профилей линий в спектре ρ Leo показал, что оптимальное значение $\Delta T = 20$ минут.

На рис. 5 представлен результат применения оконного Фурье-преобразования к вариациям профилей бальмеровских линий в спектре ρ Leo для частот в интервале [0, 1.2] мин⁻¹.

В нижней части оконных Фурье-периодограмм видны регулярные компоненты вариаций профилей, обнаруженные при анализе 1271 спектра ρ Leo. В то же время, кроме этих компонент, обнаруживаются и новые. Наиболее ярко выражен компонент с переменной частотой $\nu = 0.4$ мин⁻¹ (период $P \sim 2.5$ минут) при $t_0 = 0$ и $\nu = 0.5$ мин⁻¹ при $t_0 = 100$ минут ($P \sim 2$ минуты). В области $t_0 \approx 70$ минут данный компонент раздваивается. Нижняя ветвь примерно соответствует частотам вариаций при $t_0 = 0$.

Кроме того, на периодограммах виден менее выраженный компонент с переменной частотой $\nu = 0.2 \text{ мин}^{-1}$ ($P \sim 5 \text{ минут}$) при $t_0 = 0$ и $\nu = 0.1 \text{ мин}^{-1}$ ($P \sim 10 \text{ минут}$) при $t_0 = 110 \text{ ми-}$ нут. Возможно также присутствие компонента с $\nu \sim 0.75 \text{ мин}^{-1}$ с периодом $P \sim 1.3 \text{ минут}$. Однако этот компонент прослеживается только до значения $t_0 \leq 10 \text{ минут}$.

На рис. 5 видны также слабые детали в области $\nu > 0.8 \text{ мин}^{-1}$, однако для подтверждения их реальности требуется дополнительное исследование. Такие же, как описано выше, регулярные компоненты обнаружены нами в оконных Фурьеспектрах линий He I, Fe II, N II, O II и Si II.

4. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Обнаруженные по наблюдениям профилей спектров ρ Leo регулярные вариации с периодами $P = 4^{\rm h} - 6^{\rm h}$ связаны с нерадиальными пульсациями звезды в квадрупольной (l = 2) и более высоких модах пульсаций [19]. Обнаружение изменений профилей линий в области коротких периодов P = 30-70 минут может свидетельствовать о присутствии высоких мод нерадиальных пульсаций с l = 6-12.

Необычной особенностью звезды ρ Leo является высокая скорость макротурбулентных движений

Рис. 5. Оконный Фурье-спектр вариаций профиля линии $H\delta$, $H\gamma$ и $H\beta$ (сверху вниз) для значения $\Delta T = 20$ минут в зависимости от положения начала окна t_0 (initial time).

в фотосфере $V_{\rm m} = 72 \,\,\mathrm{кm}\,\mathrm{c}^{-1}$ [7] при том, что скорость вращения $V \sin i \sim 50 \,\mathrm{km}\,\mathrm{c}^{-1}$ (см. таблицу 1). Такое высокое значение макротурбулентной скорости может быть объяснено присутствием крупномасштабных тангенциальных движений [21]. Обнаруженные нами регулярные вариации профилей с периодами P = 30-70 минут могут быть связаны с такими движениями.

Использование оконного Фурье-преобразования показало наличие в вариациях профилей линий в спектре ρ Leo короткопериодических регулярных компонент с переменной частотой. Такие компоненты ранее не были детектированы и природа их не вполне ясна. Присутствие компонент вариаций профилей линий с короткими периодами в спектре Н 93521 было нами ранее интерпретировано как свидетельство существования высоких мод NRP с l = 20-60 [6]. Однако присутствие высоких мод NRP не объясняет переменность частот регулярных компонент вариаций профилей.

Возможно, однако, что наличие таких компонент в регулярных вариациях профилей линий может быть объяснено при предположении, что высокие моды нерадиальных пульсаций нестабильны и могут как затухать, так и генерироваться на коротких шкалах времени порядка 10–100 минут. В случае компоненты с переменной частотой $\nu = 0.4-0.5$ мин⁻¹ мы, возможно, видим затухание компоненты $\nu = 0.4$ мин⁻¹ и ее новое появление при $t_0 \approx 70$ минут и генерацию компоненты $\nu = 0.5$ мин⁻¹ при $t_0 \ge 20$ минут.

Особый интерес представляет собой присутствие в спектре ρ Leo профилей линий, существенно отклоняющихся от среднего. Появление подобных профилей в спектре говорит о возможном вкладе слабой эмиссионной компоненты в полный профиль линии и может быть свидетельством нерегулярных вариаций профилей на секундной шкале времени. Такие вариации могут быть связаны с высвечиванием горячего газа в неоднородностях звездного ветра после прохождения по ним ударной волны.

Используя функцию высвечивания горячей плазмы в области температур $T = 10^6 - 10^7$ K [22], можно оценить время высвечивания τ для звездного ветра ρ Leo с $n \sim 10^{11} - 10^{12}$ см⁻³. Величина τ составляет 10–100 секунд, что близко к характерному времени нерегулярных вариаций профилей в спектре ρ Leo. Отметим также, что нерегулярные вариации профилей линий в спектре ρ Leo могут быть связаны с нестабильностью конфигурации вещества звездного ветра, захваченного в области магнитного экватора магнитным полем ρ Leo (см., например, [23]).

5. ЗАКЛЮЧЕНИЕ

В настоящей работе исследованы вариации профилей линий в спектре звезды *р* Leo с высоким временным разрешением. Обнаружены регулярные компоненты вариаций профилей с периодами примерно 30 и 90 минут. Возможно присутствие быстрых нерегулярных вариаций на шкале времени менее 1 минуты.

Обнаружены высокочастотные ($\nu > 0.1 \text{ мин}^{-1}$) компоненты вариаций профилей с переменной частотой. Мы предполагаем, что наличие таких компонент может быть связано с нестабильностью высоких мод нерадиальных пульсаций, их генерацией и затуханием на коротких временных шкалах в области 1-10 минут.

Отметим, что вариации профилей линий в спектре звезды могут быть обусловлены спорадическим изменением размера турбулентного диска звезды вследствие атмосферных флуктуаций. При этом вызванные их влиянием вариации профилей вряд ли будут регулярными, однако вклад таких флуктуаций в нерегулярные вариации профилей нельзя полностью исключить. Для оценки этого влияния предполагается выполнение одновременных наблюдений спектра звезды сравнения, расположенной на щели вблизи от исследуемой звезды.

БЛАГОДАРНОСТИ

Настоящее исследование выполнено за счет гранта Российского научного фонда (проект № 18-12-00423).

СПИСОК ЛИТЕРАТУРЫ

- 1. L. Kaper, H. F. Henrichs, A. W. Fullerton, et al., Astron. and Astrophys. **327**, 281 (1997).
- A. F. Kholtygin, D. N. Monin, A. E. Surkov, and S. N. Fabrika, Astronomy Letters 29, 175 (2003).
- V. V. Dushin, A. F. Kholtygin, G. A. Chuntonov, and D. O. Kudryavtsev, Astrophysical Bulletin 68, 184 (2013).
- S. Hubrig, M. Schöller, and A. F. Kholtygin, Monthly Notices Royal Astron. Soc. 440, 1779 (2014).
- V. L. Afanasiev and A. V. Moiseev, Astronomy Letters 31, 194 (2005).
- 6. A. F. Kholtygin, S. Hubrig, V. V. Dushin, et al., ASP Conf. Ser. **510**, p. 299 (2017).
- C. Aerts, D. M. Bowman, S. Simon-Diaz, et al., Monthly Notices Royal Astron. Soc. 476, 1234 (2018).
- A. F. Kholtygin, G. A. Chountonov, S. N. Fabrika, et al., in *Proc. Conf on Physics of Magnetic Stars*, Ed. by I. I. Romanyuk, D. O. Kudryavtsev, O. M. Neizvestnaya, and V. M. Shapoval (Spec. Astrophys. Obs., Nizhny Arkhyz, 2007), 262.
- 9. D. N. Monin, S. N. Fabrika, and G. G. Valyavin, Astron. and Astrophys. **396**, 131 (2002).
- 10. A. F. Kholtygin, S. N. Fabrika, N. A. Drake, et al., Astronomy Letters **36**, 370 (2010).
- T. Morel, S. V. Marchenko, A. K. Pati, et al., Monthly Notices Royal Astron. Soc. 351, 552 (2004).
- 12. D. R. Gies and D. L. Lambert, Astrophys. J. **387**, 673 (1992).
- 13. P. A. Crowther, D. J. Lennon, and N. R. Walborn, Astron. and Astrophys. **446**, 279 (2006).
- 14. A. A. Pamyatnykh, Acta. Astron. 49, 119 (1999).
- I. D. Howarth, K. W. Siebert, G. A. J. Hussain, and R. K. Prinja, Monthly Notices Royal Astron. Soc. 284, 265 (1997).
- 16. S. Simón-Díaz and A. Herrero, Astron. and Astrophys. **562**, A135 (2014).

- 17. F. A. Kholtygin, C. J. Brown, P. J. Cassinelli, et al., Astron. Astrophys. Transactions **22**, 499 (2003).
- D. H. Roberts, J. Lehar, and J. W. Dreher, Astron. J. 93, 968 (1987).
- 19. A. F. Kholtygin, S. N. Fabrika, T. E. Burlakova, et al., Astronomy Reports **51**, 920 (2007).
- 20. И. Добеши, Десять лекций по вейвлетам, (НИЦ «Регулярная и хаотическая динамика», Ижевск, 2001).
- 21. C. Aerts, J. Puls, M. Godart, and M.-A. Dupret, Astron. and Astrophys. **508**, 409 (2009).
- 22. E. Landi and M. Landini, Astron. and Astrophys. **347**, 401 (1999).
- A. Ud-Doula, S. P. Owocki, and R. H. D. Townsend, Monthly Notices Royal Astron. Soc. 392, 1022 (2009).

Super-Fast Line-Profile Variability in the Spectra of OBA-Stars: B1-Star ρ Leo

A. F. Kholtygin, A. A. Batrakov, S. N. Fabrika, A. F. Valeev, I. M. Tumanova, and O. A. Tsiopa

This study continues our investigation of the super-fast variability of line profiles in the spectra of early-type stars. We have investigated the line-profile variability in spectra of OBA-stars with the SCORPIO multi-mode focal reducer mounted at the 6-m SAO RAS telescope. Regular short-period variations of the H and He lines in the spectra of the B1I star ρ Leo were detected with periods ranging from 2 to 90 minutes, as well as irregular line-profile variations on time intervals less than 1 minute. A possible origin of rapid spectral variations is discussed.

Keywords: *stars:early-type—stars: individual: ρLeo*