УДК 524.38-17

СТАТИСТИЧЕСКОЕ ИССЛЕДОВАНИЕ ВИЗУАЛЬНО-ДВОЙНЫХ ЗВЕЗД

© 2017 Х. И. Абдель-Рахман^{1,2*}, М. И. Ноух^{1,3}, В. Х. Эльсанхоури^{1,3}

¹Национальный исследовательский институт астрономии и геофизики, Каир, 11421 Египет

²Университет города Шакра, Шакра, 11961 Саудовская Аравия

³Университет Северных Границ, Арар, 73222 Саудовская Аравия Поступила в редакцию 26 октября 2016; принята в печать 6 апреля 2017

В настоящей работе исследуются некоторые статистические распределения широких пар из Вашингтонского каталога двойных звезд. Получены частотные распределения и тестовая гипотеза для некоторых основных параметров визуально-двойных. Найдено, что разность звездных величин распределена экспоненциально, следовательно большинство компонентов выбранных систем принадлежит к одному спектральному классу. Распределение отношений масс концентрируется около значения 0.7, что согласуется с функцией масс Солпитера. Распределение линейного расстояния между компонентами, по всей видимости, экспоненциально, что противоречит более ранним исследованиям тесных двойных.

Ключевые слова: двойные: визуально-двойные — методы: статистические

1. ВВЕДЕНИЕ

Исследования визуально-двойных проводятся в рамках изучения физических свойств целого семейства двойных звезд. Некоторые статистические свойства этих звезд, такие как функция распределения их линейного расстояния (удаления друг от друга), предоставляют важную информацию, связанную с их возникновением, а также в некоторых случаях с их последующей эволюцией. Дополнительные сложности при обнаружении визуальнодвойных возникают для очень удаленных компонентов. Для таких компаньонов менее свойственно формировать истинные двойные системы с основной звездой, и они являются скорее визуальными компаньонами [1].

Во избежание включения визуальных пар в статистику двойных звезд пространственное удаление пары звезд, в частности, несколько условно определено как максимально возможное для реальных двойных систем. Таким образом, некоторые истинно двойные звезды оказываются исключены из статистики, тогда как другие визуально-двойные туда ошибочно включены. Однако при тщательном выборе предела вероятное полное число визуальных пар пренебрежимо мало. Из предполагаемого верхнего предела реалистичных расстояний между звездами возможно получить статистическое соотношение между угловым расстоянием и видимой звездной величиной двойной системы, которое может быть использовано для тестирования двойственности любой пары звезд [1-5].

В настоящей работе мы исследуем некоторые статистические распределения двойных звезд (такие как разность звездных величин, отношений масс и линейных расстояний) и анализируем соотношения между ними.

2. ДАННЫЕ И МЕТОД АНАЛИЗА

Мы выполнили статистический анализ визуально-двойных из Вашингтонского каталога двойных звезд (WDS) [6]. Число звезд, которые могут образовывать визуально-двойные, можно уменьшить добавлением условия, которому будут удовлетворять компоненты физических двойных. Согласно критерию Гейнтца [7], только пары в некоторых пределах угловых расстояний и Δm могут быть отнесены к двойным. Это записывается в виде

$$C = 0.22 \,\Delta m - \lg \,\rho \left[arcsec\right] \le 0.5 \tag{1}$$

для $m_a \leq 9.5$, где m_a — видимая величина основной звезды.

Информация в каталоге WDS в некоторых случаях приведена не полностью, поэтому для отбора данных мы наложили следующие ограничения:

1) для данного исследования были отобраны только системы с измеренными значениями удалений;

^{*}E-mail: helal_ismaeil@yahoo.com

2) были отобраны только те, у которых главных компонент обладает классом светимости V.

Применяя данную процедуру, получаем 2837 систем с главными компонентами, принадлежащими классу светимости V. Для отобранных систем мы определили массы компонентов и отношения масс q, пользуясь соотношениями Аллена: Sp- M_v и Sp-масса [8] («Sp» означает спектральный класс). Расстояние до звезды d определялось из соотношения

$$m - M_v = 5 \lg d - 5.$$
 (2)

Настоящее a и проецируемое ρ удаления соотносятся в среднем как в [9]:

$$a \,[\text{arcsec}] = 1.25 \,\rho \,[\text{arcsec}].$$
 (3)

Линейные удаления можно вычислить с помощью формулы

$$a [AU] = a [arcsec] d [pc].$$

3. РЕЗУЛЬТАТЫ

3.1. Плотность распределения $\Delta m_a, m_a, q, a'' и \rho''$

Для построения плотности распределения исследуемых физических параметров были выполнены следующие шаги:

1) Мы определили минимальные и максимальные значения данных и получили диапазон R = Maximum value-Minimum value.

2) Для получения числа интервалов *n* было применено правило Стерджеса:

$$n = 1 + 3.3 \lg N,$$
 (4)

где *N* — число измеренных точек.

3) Длина интервалов L задается уравнением

$$L = \frac{R}{n}.$$
 (5)

В таблице 1 содержится наглядная статистика для $\Delta m, m_v, q, \rho''$ и a'', приведены значения N, \overline{x} (среднее), σ (стандартное отклонение), минимальное и максимальное значения и диапазон, полученный в ходе указанной выше процедуры.

3.1.1. Разность видимых величин

После анализа разностей видимых величин Δm мы нашли, что большая часть значений (99%) лежит между 0 и 7.8. Аномальные точки были удалены. В итоговый список вошли 2816 двойных. Мы воспользовались уравнениями (4) и (5) и данными из таблицы 1, чтобы получить число n и длину L интервалов. Затем, пользуясь значениями n = 12 и

L = 0.65, мы составили таблицу 2, где интервалы (классы) представлены в первой колонке, во второй колонке приведены центры интервалов (среднее нижних и верхних пределов), а в третьей — частота встречаемости (количество представителей выборки, соответствующее каждому интервалу). Из таблицы 2 видно, что двойные концентрируются в интервале 0–0.65 в количестве 817, что соответствует 29% полной выборки. В целом разности величин двойных концентрируются в интервале 0–5.2 (2644 двойных), т.е. приблизительно 94%, а 6% приходится на интервал 5.2–7.8.

На рис. 1 показано, что частота встречаемости разности величин двойных распределена экспоненциально. Истинное распределение визуальнодвойных по разностям величин отражает их распределение по отношениям масс q. Из графика видно, что большинство широких систем концентрируется примерно около $\Delta m \simeq 0$; это значит, что компоненты таких систем имеют почти одинаковые спектральные классы.

3.1.2. Видимая величина

Уравнения (4) и (5) использовались для получения количества интервалов и их длины, n = 12 и L = 0.93, а затем — плотности распределения видимой величины m_a , которая представлена в таблице 3. Ее структура схожа со структурой таблицы 2.

В таблице З частота распределения видимой величины m_a выше в интервале 8.74–9.67 (872 двойных) и в интервале 9.67–10.6 (662), что составляет примерно 54% от общего числа двойных. Мы делаем вывод, что плотность распределения видимых величин главных компонентов m_v демонстрирует приблизительно экспоненциальный рост (см. рис. 2).

3.1.3. Отношение масс

Мы находим плотность распределения отношений масс, пользуясь основной статистикой из таблицы 1. Полученный результат представлен в таблице 4. Можно заметить следующее распределение по частоте встречаемости (концентрации): 385 двойных концентрируются в интервале 0.826-0.911, 342 — в интервале 0.911-0.966, 330 двойных — в интервале 0.741-0.826 соответственно. Полное число двойных в последних трех интервалах составляет 1057, т.е. 37% от всех двойных. Также 2424 двойные (85.4%) имеют отношения масс в интервале от 0.401 до 1.081. Это значит, что 96% двойных сконцентрированы между значениями 0.231 и 1.081 отношений масс, а 4% между 0.061 и 0.231.

Fac	блица	1.	Наглядная	статистика	для	исследу	емых о	физических	параметров
-----	-------	----	-----------	------------	-----	---------	--------	------------	------------

Параметр	N	\bar{x}	σ	Минимальное	Максимальное	Интервал
				значение	значение	ттервал
Δm	2816	2.014	1.75	0	7.8	7.8
m_v	2839	8.61	1.51	1.3	12.5	11.2
q	2839	0.67	0.23	0.061	1.078	1.017
ρ , arcsec	2005	641	580	6	2280	2273
a, arcsec	2742	2561	3641	8	19992	19984

Рис. 1. Распределение разности величин для широких визуально-двойных.

Интервал	Центр	Частота
(класс)	интервала	(число)
0-0.65	0.325	817
0.65-1.3	0.98	467
1.3 - 1.95	1.625	302
1.95 - 2.6	2.275	349
2.6 - 3.25	2.925	243
3.25 - 3.9	3.575	204
3.9 - 4.55	4.225	172
4.55 - 5.2	4.875	90
5.2 - 5.85	5.525	57
5.85 - 6.5	6.175	54
6.5-7.15	6.825	31
7.15-7.8	7.475	30
Сумма	_	2816

Таблица 2. Плотность распределения разности величин

Группа	Центр	Частота
(класс)	группы	(число)
1.3-2.23	1.765	2
2.23-3.16	2.695	4
3.16 - 4.09	3.625	13
4.09 - 5.02	4.555	63
5.02 - 5.95	5.485	119
5.95 - 6.88	6.415	192
6.88-7.81	7.345	336
7.81-8.74	8.275	486
8.74-9.67	9.205	872
9.67-10.6	10.135	662
10.6-11.53	11.065	83
11.53-12.5	12.015	7
Сумма	_	2839

Таблица 3. Распределение видимой величины m_a

Распределение отношений масс q, представленное в таблице 4, показано на рис. 3. Максимальная частота этого распределения сконцентрирована около q = 0.7. Как утверждают Верещагин и др. [10], на распределение отношений масс влияют два селективных фактора, а именно: звездная величина и угловое расстояние. Так как в нашем исследовании мы рассматриваем широкие системы

Рис. 2. Плотность распределения видимых величин m_a главных компонентов визуально-двойных.

Рис. 3. Плотность распределения отношений масс q широких визуально-двойных систем.

с величинами меньше 10^{m} , то эти два эффекта селекции уменьшаются. На рис. З видно, что распределение отношений масс скорее всего линейно. Еще один фактор, влияющий на распределение q — число вырожденных компонентов, которые приводят к обманчивым результатам. Доля вырожденных компонентов R может быть получена из двух формул [11]:

где

$$r(q) = q^{1.35} - q^{4.60}$$

R = r/(1+r),

для случая постоянного темпа звездообразования и

$$r(q) = q^{1.35} - q^{7.85}$$

для линейного темпа звездообразования. В этих вычислениях масса главного компонента должна быть больше 1.045 M_{\odot} . Доля R вычислялась для обоих случаев и показана на рис. 4. По форме этой кривой мы можем заключить, что частота двойных с вырожденным компонентом высока в случае, когда в распределении двойных по отношениям масс многие системы имеют q около 0.7.

3.1.4. Проецируемое расстояние

Сначала удаляем 834 аномальные точки. Используя основные наглядные параметры из таблицы 1 и уравнения (4) и (5), получим n = 12 и длину интервала L = 190.

Таблица 5 построена так же, как и таблицы, приведенные выше. Отметим, что частоты расположены в убывающем порядке; это значит, что большое количество двойных (56) находятся в интервале 6–196 (28%); в интервале 196–386 находятся 370 двойных (18.5%) и т.д. Большинство двойных концентрируются в первых шести интервалах (примерно 80%), а 20% находятся в остальных шести интервалах. Наконец, мы делаем вывод, что плотность распределения проекций расстояний для двойных систем экспоненциальна, как показано на рис. 5.

3.1.5. Линейное расстояние

После удаления 97 аномальных точек и применения уравнений (4) и (5) к основным параметрам из таблицы 1 получаем число интервалов n = 12 и длину интервала L = 1665.

Группа	Центр	Частота
(класс)	группы	(число)
0.061-0.146	0.1035	21
0.146-0.231	0.1885	78
0.231-0.316	0.2735	124
0.316-0.401	0.3585	192
0.401 - 0.486	0.4435	253
0.486 - 0.571	0.5285	323
0.571 - 0.656	0.6135	308
0.656 - 0.741	0.6985	287
0.741 - 0.826	0.7835	330
0.826-0.911	0.8685	385
0.911-0.996	0.9535	342
0.966-1.081	1.0385	196
Сумма	_	2839

Рис. 4. Доля широких пар с одним вырожденным компонентом R в зависимости от отношения масс q; нижняя кривая: случай постоянного звездообразования; верхняя кривая: линейно убывающий темп звездообразования, в настоящий момент стремящийся к нулю.

Плотность распределения линейных расстояний показана в таблице 6. Можно отметить, что больше всего двойных приходится на интервал 8–1673 (1700 систем, т.е. примерно 62%); 88% двойных сконцентрированы в первых четырех интервалах, от 8 до 6668, а 12% — в остальных восьми инТаблица 5. Плотность распределения проекций расстояний

Группа	Пентр	Частота	Лоля
(класс)	группы	(число)	<u>%</u>
6-196	101	561	28.0
196-386	291	370	18.5
386-576	481	249	12.4
576-766	671	191	9.5
766 - 956	861	118	5.9
956-1146	1051	117	5.8
1146-1336	1241	93	4.6
1336-1526	1431	90	4.5
1526-1716	1621	70	3.5
1716-1906	1811	50	2.5
1906-2096	2001	51	2.5
2096-2286	2191	45	2.2
Сумма	_	2005	100

Таблица 6. Плотность распределения линейных расстояний

Группа	Центр	Частота	Доля,
(класс)	группы	(число)	%
8-1673	840.5	1700	61.999
1673-3338	2505.5	378	13.786
3338-5003	4170.5	208	7.586
5003 - 6668	5835.5	126	4.595
6668-8333	7500.5	97	3.538
8333-9998	9165.5	75	2.735
9998-11663	10830.5	50	1.823
11663-13328	12495.5	31	1.131
13328-14993	14160.5	23	0.839
14993-16658	15825.5	20	0.729
16658-18323	17490.5	17	0.62
18323-19993	19158	17	0.62
Сумма	—	2742	100.0

тервалах. На рис. 6 видно, что линейные удаления двойных систем распределены экспоненциально.

Линейное расстояние — еще одна величина, тесно связанная с эволюцией широких пар. Так как нельзя определить орбиту широких двойных систем, Куипер [12], Куто [13], ван-Альбада [14] и Халбвакс [1] установили, что линейное расстояние почти эквивалентно большой полуоси орбиты. Как показано на графике, распределение экспоненци-

Рис. 5. Плотность распределения проецируемых удалений визуально-двойных систем.

ально, а это противоречит результатам, полученным для тесных двойных систем Лайтеном [15] и Халбваксом [4]. Такое противоречие можно объяснить эволюционными процессами в тесных двойных.

3.2. Доверительные интервалы и тестовые гипотезы

В этом разделе мы вычисляем 95% доверительные интервалы (CI) и проверяем гипотезу о средних для вычисленных параметров.

Сначала мы получаем 95% СІ для среднего населения μ в виде:

$$\overline{x} - y \le \mu \le \overline{x} + y,\tag{6}$$

где \overline{x} — среднее выборки, а y — погрешность, вычисленная в виде

$$y = Z_{\alpha/2} \sigma_{\overline{x}}$$
 is $\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}}.$ (7)

Уровень значимости α равен 0.05, а $Z_{\alpha/2}$ мы получаем из таблицы стандартного нормального распределения (Z-таблица).

Далее, чтобы протестировать гипотезу, мы следуем процедуре:

1) задаем нулевую гипотезу H_0 и альтернативную гипотезу H_1 в виде

$$H_0 : \mu = \mu_0, H_1 : \mu \neq \mu_0 \text{ or } \mu > \mu_0 \text{ or } \mu < \mu_0,$$
(8)

где μ_0 — постоянная величина;

2) задаем уровни значимости α (0.01, 0.05 или 0.10);

3) вычисляем статистический тест:

$$Z = \left(\frac{\overline{x} - \mu_0}{\sigma}\right)\sqrt{n},\tag{9}$$

если количество данных велико (больше 30), или, если оно мало пользуемся статистическим тестом

$$t = \left(\frac{\overline{x} - \mu_0}{S}\right)\sqrt{n}.$$
 (10)

Z, *t* и *S* — площади под кривой стандартного распределения, соответствующего уровню значимости, распределению Стьюдента и стандартному отклонению для малой выборки;

4) определяем критическую точку, сравнивая $Z_{\text{tabulated}}$ и $Z_{\text{calculated}}$ из шага 3 и z-таблицы;

5) на основании шага 4 отвергаем или принимаем нулевую гипотезу.

Используя данные из таблицы 1 и применяя уравнение (6), получаем:

• 95% CI для средней разности видимых величин $\mu_{\Delta m}$:

$$1.935 \le \mu_{\Delta m} \le 2.065;$$

• 95% СІ для средней видимой величины μ_{m_a} :

$$8.545 \le \mu_{m_a} \le 8.655;$$

- 95% СІ для среднего отношения масс μ_q : 0.6615 $\leq \mu_q \leq 0.6785;$
- 95% СІ для среднего проецируемого расстояния $\mu_{o''}$:

$$615.72 \le \mu_{o''} \le 666.28;$$

 95% СІ для среднего линейного расстояния μ_a: 2425 < μ_a < 2697.

АСТРОФИЗИЧЕСКИЙ БЮЛЛЕТЕНЬ том 72 № 2 2017

Рис. 6. Плотность распределения линейных расстояний визуально-двойных систем.

Параметр	Количество	Нулевая и альтернативная	Статистический
	случаев	гипотезы	тест (Z)
Δm	2816	$H_0:\ \mu_{\Delta m}=2.5,\ H_1:\ \mu_{\Delta m} eq 2.5$ или $\mu>2.5$ или $\mu_{\Delta m}<2.5$	-15.16
m_a	2839	$H_0:\; \mu_{m_a}=9, \hspace{0.5cm} H_1:\; \mu_{m_a} eq 9 \hspace{0.5cm}$ или $\mu_{m_a}>9 \hspace{0.5cm}$ или $\mu_{m_a}<9$	-14.2
Отношение масс q	2839	$H_0:\; \mu_q=0.7, H_1:\; \mu_q eq 0.7$ или $\mu_q>0.7$ или $\mu_q<0.7$	-6.95
$ ho^{\prime\prime}$	2005	$H_0:\ \mu=650, \qquad H_1:\ \mu\neq 650$ или $\mu>450$ или $\mu<650$	-0.7
a	2742	$H_0:\ \mu=2570,\ \ H_1:\ \mu eq 2570$ или $\mu>2570$ или $\mu<2570$	-0.13

Таблица 7. Тестовая гипотеза вышеуказанных параметров

После применения уравнений (8) и (9) тестируем гипотезу для вышеуказанных параметров, пользуясь $\alpha = 0.05$, $Z_{0.025} = 1.96$ и $Z_{0.05} = 2.58$. Результаты представлены в таблице 7.

Для средней разности видимых величин $\mu_{\Delta m}$ при выборе $\mu_0 = 2.5 > 2$ отметим, что для случая $\mu_{\Delta m} \neq 2.5$ в альтернативной гипотезе H_0 нужно отвергнуть, так как статистический тест попадает в отвергнутую область. В случае $\mu_{\Delta m} < 2.5$ мы отвергаем H_0 , а в случае $\mu_{\Delta m} > 2.5$ принимаем H_0 . Подразумевается, что средняя разность видимых величин для популяции равна 2.5 или больше, т.е. больше 2.

Если мы выбираем $\mu_0 = 9$ для средней видимой величины μ_{m_a} , то после тестирования получаем, что в случае $\mu_{m_a} \neq 9$ в альтернативной гипотезе мы отвергаем H_0 , т.к. статистический тест оказывается в отвергнутой области; при $\mu_{m_a} < 9$ отвергаем H_0 ; при $\mu_{m_a} > 9$ принимаем H_0 . Таким образом, средняя по популяции видимая величина равна 9, или больше 8.6.

Для среднего отношения масс μ_q при выборе $\mu_0 = 0.7$ тестирование дает следующие результаты: если выбираем $\mu_q \neq 0.7$ в альтернативной гипотезе, отвергаем H_0 , т.к. статистический тест находится в отвергнутой области; при $\mu_q < 0.7$ отвергаем H_0 , а при $\mu_q > 0.7$ H_0 принимается. Это подразумевает

среднее по популяции отношение масс, равное 0.7, или больше 0.67.

При выборе $\mu_0 = 650$ для проекции расстояния мы принимаем H_0 во всех трех случаях. Это неверно, т.к. стандартное отклонение, или дисперсия, велико, что приводит к малой величине теста, заведомо попадающей в принятую область. Нужны дополнительные наблюдения для более точного вычисления данного параметра.

Для линейного расстояния при выборе $\mu_0 = 2570$ по той же причине, что и для проекции расстояния, мы принимаем H_0 во всех трех случаях. Проецируемые и линейные расстояния нуждаются в дальнейшем исследовании.

4. ОБСУЖДЕНИЕ И ЗАКЛЮЧЕНИЕ

В настоящей работе, мы выполнили статистическое исследование для визуально-двойных систем из Вашингтонского каталога двойных звезд.

Некоторые статистические распределения, такие как плотность распределения разности величин, линейного расстояния и отношения масс тесно связаны с эволюцией не только визуальнодвойных, но двойных систем в целом. Мы определили доверительные интервалы и провели проверку гипотезы для пяти исследуемых параметров. Полученные результаты следующие: 1. Разности величин концентрируются около $\Delta m \simeq 0$, это значит, что большинство систем имеет компоненты одинаковой величины.

2. Плотность распределения отношений масс сконцентрирована около 0.7, что согласуется с функцией масс Солпитера.

3. Вычисленная доля вырожденных звезд не превышает 37% выборки, а, значит, можно считать, что выборка состоит из ярких объектов.

4. Линейные расстояния, по всей видимости, распределены экспоненциально, что противоречит поведению тесных двойных систем.

СПИСОК ЛИТЕРАТУРЫ

- 1. J. L. Halbwachs, Astron. and Astrophys. **128**, 399 (1983).
- 2. H. A. Abt, Astrophys. J. 304, 688 (1986).
- 3. H. A. Abt, Astrophys. and Space Sci. **142**, 111 (1988).
- 4. J. L. Halbwachs, Astron. and Astrophys. **168**, 161 (1986).

- M. I. Nouh and M. A. Sharaf, J. Astrophys. Astron. 33, 375 (2012).
- 6. B. D. Mason, G. L. Wycoff, W. I. Hartkopf, et al., Astron. J. **122**, 3466 (2001).
- W. D. Heintz, Geophys. Astrophys. Monographs 15 (1978).
- 8. C. W. Allen, *Astrophysical Quantities*, 3rd ed. (Univ. London, Athlone Press, London, 1973).
- 9. P. Couteau, *Observing Visual Double Stars* (MIT Press, Cambridge, MA, 1981).
- 10. S. Vereshchagin, A. Tutukov, L. Iungelson, et al., Astrophys. and Space Sci. **142**, 245 (1988).
- 11. J. L. Halbwachs, Astrophys. and Space Sci. **110**, 149 (1985).
- 12. G. P. Kuiper, Publ. Astron. Soc. Pacific 47, 15 (1935).
- 13. P. Couteau, J. Observateurs 43, 41 (1960).
- 14. T. S. van Albada, Bull. Astron. Inst. Netherlands **20**, 47 (1968).
- 15. W. J. Luyten, Communications Serie B, No. 17, p. 45 (1967).

Перевод Л. Чмыревой

Statistical Study of Visual Binaries

H. I. Abdel-Rahman, M. I. Nouh, and W. H. Elsanhoury

In this paper, some statistical distributions of wide pairs included in the Washington Double Star Catalog are investigated. Frequency distributions and testing hypothesis are derived for some basic parameters of visual binaries. It was found that the magnitude difference is distributed exponentially, which means that the majority of the components of the selected systems are of the same spectral type. The distribution of mass ratios is concentrated at about 0.7 which agrees with Salpeter mass function. The distribution of the linear separation appears to be exponential which contradicts previous studies for close binaries.

Keywords: *binaries: visual — methods: statistical*

226