УДК 524.74-77(083.8)

КАТАЛОГ РАДИОГАЛАКТИК С *Z* > 0.3. II: ФОТОМЕТРИЧЕСКИЕ ДАННЫЕ

© 2009 М. Л. Хабибуллина^{*}, О. В. Верходанов^{**}

Специальная астрофизическая обсерватория, Нижний Архыз, 369167 Россия Поступила в редакцию 1 декабря 2008 г.; принята в печать 4 апреля 2009 г.

Описывается процедура построения выборки далеких (z > 0.3) радиогалактик с использованием баз данных NED, SDSS, CATS. Выборка предполагается очищенной от объектов, имеющих свойства квазаров. Данная работа является второй частью описания каталога радиогалактик, который предполагается использовать для космологических тестов. Здесь приводятся результаты выборки фотометрических величин для объектов списка, а также проводится его первичный статистический анализ с построением диаграмм Хаббла.

Ключевые слова: радиоисточники

1. ВВЕДЕНИЕ

Улучшение качества проводимых наблюдений и моделирование параметров позволяет говорить в настоящее время о приближении эпохи точной космологии ("Precision cosmology" — высказывание М. Лонгейера в Манчестере в 2000 г.). Несмотря на то, что последние космические и наземные эксперименты [1, 2] дали богатый материал для измерения параметров Вселенной и построения согласованной космологической модели, задача проверки соответствия используемой ΛCDM -парадигмы другим тестам остается актуальной, т.к. уровень точности определения параметров (H_0 , Ω_Λ , Ω_{DM} , Ω_b, Ω_k и др.) пока позволяет существование и других описаний [3]. Среди объектов, используемых для независимой проверки этих параметров, отметим радиогалактики как одни из самых интересных. Они принадлежат популяции галактик самой высокой светимости, что делает возможным их изучение на больших красных смещениях и, тем самым, использовать как зонды состояния Вселенной в другие эпохи. Чрезвычайно важным моментом при исследовании этих объектов может считаться тот факт, что их родительскими галактиками являются гигантские эллиптические галактики (gE), которые на начальном этапе селекции могли бы использоваться [4] как стандартные свечи/линейки. Отождествление с gE важно как при прослеживании эволюции звездных систем на больших красных смещениях, так и при поиске далеких групп галактик или протоскоплений, в центре которых они

находятся, а также при исследовании процессов слияния и взаимодействия, на которые может указывать проявляющаяся активность их ядер. Одним из параметров, определяемых из данных наблюдений, является возраст галактики [5-7], который ограничен возрастом Вселенной — он просто не может быть больше последнего, так как требуется некоторое время для образования самой галактики после возникновения Вселенной. А возраст Вселенной является функцией параметра Хаббла. Одна из особенностей радиогалактик. удобная для хронометрических оценок, состоит в том, что даже на больших красных смещениях ($z \sim 4$) звездное население их родительских галактик эволюционирует практически пассивно [8, 9]. Это позволяет оценивать возраст системы.

Если построить полное распределение радиогалактик в зависимости от красного смещения *z*, можно исследовать не только их функцию светимости, но также исследовать проблему формирования сверхмассивных черных дыр в центре галактик и динамику расширения Вселенной. Согласно наблюдательным данным [10], между физическими параметрами радиогалактик (полная масса, доля барионов, возраст, светимость и др.) обнаруживаются корреляции, что в случае одновременного начала формирования галактик типа gE облегчает их использование в космологических целях. Но для решения таких задач необходимо наличие как можно более полной выборки радиогалактик в различных интервалах *z*.

Данная работа посвящена построению выборки радиогалактик в диапазоне красных смещений z > 0.3. Она является второй частью описания

^{*}E-mail: rita@sao.ru

^{**}E-mail: vo@sao.ru

Рис. 1. Положение отобранных радиоисточников на небесной сфере в галактических координатах. Кружками отмечены объекты SDSS, крестиками — остальные источники.

каталога вслед за работой I [11] и содержит каталогизированные оптические данные радиогалактик из доступной литературы.

В работе I описывается построение выборки с использованием баз данных NED^1 и $CATS^2$ и этапов селекции, в результате которой для дальнейших исследований мы отобрали 2442 объекта. Кроме того, список объектов из работы I содержит имена исходных каталогов, откуда взяты данные об объектах (а в случае обзоров 3С и 4С имена радиоисточников), экваториальные координаты (J2000.0) и спектроскопические красные смещения. Отметим, что в каталог отобранных галактик включены также объекты из других списков, в том числе источники с ультракрутыми спектрами $(\alpha < -1.0, S \sim \nu^{\alpha})$. Именно среди таких объектов высок процент далеких радиогалактик [12-17]. Самые далекие радиогалактики с красным смещением z > 4.5: z = 5.199 [18] и с z = 4.514 [19] были открыты с помощью этого критерия. Для выбранных радиогалактик была проведена кроссиндентификация с радиокаталогами CATS и рассчитан спектральный индекс на частотах 325, 1400 и 4850 МГц.

В работе I для нашей выборки мы также построили зависимость "спектральный индекс — красное смещение" ($\alpha(z)$) и другие диаграммы и распределения.

В настоящей работе мы приведем аналогичную статистику результатов оптических наблюдений, исходно каталогизированных в базах данных NED и SDSS. Отметим, что фотометрические оценки характеристик для гигантских эллиптических галактик могут быть использованы для ряда космологических тестов, таких, например, как хаббловская диаграмма "зв. вел. — z" ("K-z") [8], или диаграмма "возраст — z" [20]. Имеется также

набор тестов, позволяющих оценить параметры и эволюционные характеристики Вселенной на основе радиоданных (см., например, [21–23]).

Как уже отмечалось ранее, данная работа является второй из предполагаемых трех, посвященных построению выборки и статистическому анализу каталога радиогалактик, в котором собраны объекты с известным спектроскопическим *z*, излучающие в радиодиапазоне, для которых проведена оптическая фотометрия. В дальнейшем, используя физические параметры объектов этого каталога, мы планируем провести космологические тесты, приведенные в работе I [11].

2. КАТАЛОГ

2.1. Описание каталога

В данной работе мы даем описание второй части списка радиогалактик, содержащей звездные величины. Данные оформлены в виде Таблицы в Приложении, в столбцах которой указаны имена объектов и звездные величины. Полностью каталог помещен на сайте базы данных САТЅ ftp://cats.sao.ru/pub/CATS/RGLIST.Для фильтров, в которых измерены приведенные звездные величины, в таблице используются стандартные обозначения: u, g, r, i, z — фильтры SDSS³; R, U, B, V, G, H, I, J, K, R, Z — полосы системы Джонсона и UKIDSS; r_G , i_G — фильтры системы Гана (Gunn); F160W, F775W, F850LP, F702W, F606W, F814W — фильтры телескопа Хаббла; FUV, NUV — ультрафиолетовые фильтры в диапазонах 1150-1700 Å и 1575-3110 Å соответственно; О, Е — фотографические величины голубых и красных карт Паломарского Атласа.

Координаты отобранных радиогалактик приведены в Таблице в Приложении к работе I. Их положение на небесной сфере показано на Рис. 1.

¹http://nedwww.ipac.caltech.edu

²http://cats.sao.ru

³Величины SDSS приведены в системе AB в определении Petrosian [24].

Рис. 2. Слева направо, сверху вниз: гистограммы распределения звездных величин в фильтрах H, I, J, K, R, V, g, r, u, i, z.

2.2. Статистический анализ выборки

Как уже отмечалось в работе I, составленный список галактик не является полным по заполнению небесной сферы и однородным по чувствительности и частотным диапазонам, так как выборка содержит объекты из разных каталогов и несвязанных областей неба. Положение отобранных галактик на небесной сфере показано на Рис. 1. Наиболее полная и однородная подвыборка данного списка содержит объекты обзора SDSS, отмеченные на Рис. 1 другим маркером. Среди радиогалактик SDSS (радиоданные из NVSS [25] и FIRST [26]) большое число объектов с небольшими красными смещениями (z < 0.5) и малыми плотностями потоков (S < 15 мЯн), что отличает качественно эту подвыборку от других.

Мы провели первичный статистический анализ составленного списка, результаты которого показаны на Рис. 2 и 3. На Рис. 2 мы приводим

Рис. 3. Слева направо, сверху вниз: хаббловские диаграммы "зв. вел. — *z*" для фильтров H, I, J, K, R, V. Галактики группы (1) отмечены крестиками, а группы (2) — кружками.

гистограммы распределения звездных величин в фильтрах H, I, J, K, R, V, g, i, r, u и z.

Как видно из этого рисунка, величины объектов в различных фильтрах распределены по-разному. Однако наличие для большого числа радиогалактик измерений больше чем в трех фильтрах позволит в дальнейшем провести для них оценку возраста звездного населения. При исследовании выборки источники были разделены на две группы: (1) размер большой оси которых, по данным обзора

Рис. 4. Слева направо, сверху вниз: хаббловские диаграммы "зв. вел. — z" для фильтров g, i, r, u, z. Галактики группы (1) отмечены крестиками, а группы (2) — кружками. Для величин g, i, r, z построены регрессии mag(z).

NVSS, больше 29" и (2) — меньше 29". Эта величина — медианное значение размера источников нашей выборки, по данным NVSS. Соответственно на Рис. 3 и 4 галактики группы (1) отмечены

5

4

Redshift S

1

0

5

4

17

19

крестиками, а группы (2) — кружками. Подобное разделение сделано для поиска возможного физического различия радиогалактик в зависимости от их радиоразмера, что могло бы помочь при изу-

Рис. 5. Хаббловские диаграммы для фильтров g (слева) и z (справа). Галактики группы (1) отмечены крестиками, а группы (2) — кружками. Регрессионные прямые подчеркивают две выделяемые популяции объектов.

Таблица. Параметры регрессионной зависимости для фильтров g, i, r, z. Для полос g и z выделены две популяции, отмеченные, соответственно, индексами 1 и 2

Фильтр	p	q
g_1	-2.15	0.12
g_2	0.08	0.02
i	-2.34	0.15
r	-2.20	0.14
z_1	-2.01	0.14
z_2	0.43	0.003

чении гигантских радиогалактик [27]. Однако, как видно из рисунков, отличие диаграмм для подвыборок по данному параметру не существенно.

Для величин g, i, r, z прослеживается линейная зависимость mag(z), которую мы провели с использованием средних значений в бинах размером $\Delta z = 0.5$. Регрессионная зависимость описывается законом z = p + qx, где z — красное смещение, p — постоянная, q — наклон прямой. В Таблице приведены параметры регрессионной зависимости для фильтров g, i, r, z. Для фильтра и изменение красного смещения z со звездной величиной не наблюдается. Кроме того, в фильтрах g и z удается выделить две популяции объектов, характеризуемые различными регрессионными зависимостями (Рис. 5).

Отметим радиогалактики, которые не вписываются в общую зависимость на приведенных хаббловских диаграммах: 2MASX J15542080+2712295 (z=1.439),

· · · · · · · · · · · · · · · · · · ·		
TXS	0828+193	(z=2.572),
SDSS	J162626.28+371441.6	(z=2.656),
SDSS	J110245.80+602830.6	(z=2.111),
SDSS	J143631.27+431124.7	(z=4.261),
SDSS	J082907.43+064546.0	(z=2.224),
SDSS	J074324.07+233626.0	(z=2.480),
SWIRE	J104528.29+591326.7	(z=2.310).
		· · · · · · · · · · · · · · · · · · ·

3. ЗАКЛЮЧЕНИЕ

Мы представили вторую часть каталога радиогалактик с красным смещением z > 0.3, содержащую полную информацию о звездных величинах объектов. При построении каталога использовались списки объектов из NED и CATS. Выборка включает в себя объекты SDSS и программы "Большое Трио". Проведен первичный статистический анализ распределений отдельных звездных величин. Данный каталог является основой для дальнейшего изучения возрастов далеких радиогалактик. Для 11 фильтров мы построили хаббловские диаграммы, а для фильтров g, i, r, z обзора SDSS определили параметры линейной регрессии. Кроме того, в фильтрах g и z удается выделить две популяции объектов, характеризуемые различными регрессионными зависимостями.

Таблица. Звездные величины

Название	Другое название	Зв. вел.
000013-095803	SDSS J000025.55-095753.0	$u{=}21.18{\pm}0.77; g{=}21.09{\pm}0.17; r{=}19.19{\pm}0.08; i{=}18.59{\pm}0.07$
		z=18.14±0.20
000027-010232	SDSS J000027.88-010235.4	$u=21.36\pm0.21;g=20.92\pm0.08;r=19.20;i=18.48\pm0.02$
		z=18.12±0.04
000122-001142	*FBQS J0001-0011	
000154+020449	PKS 2359+017	
000213-002954	SDSS J000213.78-002952.1	$u = 24.64 \pm 4.78; g = 22.02 \pm 0.22; r = 20.07 \pm 0.09; i = 19.28 \pm 0.05$
		z=19.33±0.19
000327-154706	*PKS 0000-160	
000347-232943	PKS 0001-237	b _J =20.13±0.17
000451-092432	SDSS J000451.85-092430.9	$u{=}23.29{\pm}7.65; g{=}21.14{\pm}0.51; r{=}18.84{\pm}0.07; i{=}18.24{\pm}0.08$
		z=18.00±0.20
000611-014143	4C -02.01	
000620+390022	4C +38.01	
000626+153942	SDSS J000626.42+153943.2	$u{=}21.53{\pm}0.71;g{=}20.35{\pm}0.10;r{=}18.55{\pm}0.03;i{=}17.83{\pm}0.03$
		z=17.42±0.07
000646+065107	*4C +06.01	
000847-084721	SDSS J000854.88-084546.0	$g{=}20.58{\pm}0.17; r{=}18.87{\pm}0.06; i{=}18.20{\pm}0.05; z{=}17.73{\pm}0.14$
000905 - 205635	PKS 0006-212	
000940-091614	SDSS J000940.26-091616.2	$u{=}23.31{\pm}2.15;g{=}23.40{\pm}1.29;r{=}20.88{\pm}0.18;i{=}19.68{\pm}0.10$
		z=19.18±0.26
000947+352346	TOOT J0009+3523	
001107+172945	*MRC 0008+172	
001245+005340	SDSS J001249.08+005321.9	$u{=}21.65{\pm}1.46;g{=}20.00{\pm}0.12;r{=}18.84{\pm}0.05;i{=}18.22{\pm}0.06$
		z=17.71±0.13
001310+005138	*3C 005	
001313+345931	TOOT J0013+3459	
001315+774930	NVSS J001311+774846	
001426-020552	PKS 0011-023	B=23.53;K=17.53;R=22.37
001631+791657	3C 006.1	$H=17.70\pm0.24; K=16.17\pm0.10$
001718-095236	SDSS J001717.99-095252.5	$u{=}22.28{\pm}2.00;g{=}20.91{\pm}0.19;r{=}18.88{\pm}0.05;i{=}18.15{\pm}0.05$
		z=17.78±0.16

Таблица. (Продолжение)

Название	Другое название	Зв. вел.
001736+145101	SDSS J001736.90+145101.9	$u = 18.84 \pm 0.02; g = 18.33 \pm 0.01; r = 17.82 \pm 0.01; i = 17.47 \pm 0.01$
		z=17.16±0.02
001758-223801	PMN J0017-2238	
001805+161255	ISS 029	i=19.57;z=19.10;B=23.28;V=21.67;R=20.35
001841+160204	NVSS J001841+160204	i=19.10;z=18.59;B=22.76;V=21.18;R=19.86
001851-124238	3C 008	
001855+094004	PMN J0018+0940	
001856+350819	TOOT J0018+3510	
001958+143644	*SDSS J001958.74+143636.8	$u = 20.41 \pm 3.42; g = 19.53 \pm 0.12; r = 17.82 \pm 0.10; i = 17.18 \pm 0.10$
		$z=17.04\pm0.16$
002034-705527	IRAS 00182-7112	
002124+731239	*87GB 001835.0+725604	
002129+011631	SDSS J002137.48+011603.4	$u{=}20.08{\pm}0.56; g{=}21.07{\pm}0.12; r{=}19.52{\pm}0.06; i{=}18.52{\pm}0.04$
		z=18.50±0.13
002142-090044	SDSS J002142.25-090044.6	$u{=}20.22{\pm}0.12; g{=}19.74{\pm}0.03; r{=}19.25{\pm}0.03; i{=}18.65{\pm}0.03$
		z=18.43±0.08
002219-360730	NVSS J002219-360728	K _s >14.20
002225+001456	4C +00.02	R=18.10±0.20
002241+441905	*B3 0020+440	
002309-250232	PKS 0020-25	
002402 - 325254	NVSS J002402-325253	$K_s = 19.07 \pm 0.23$
002548-260217	PKS 0023-26	$b_J = 20.35 \pm 0.17$
002607-392028	LCRS B002339.4-393707	$b_J = 19.42 \pm 0.12; r_G = 17.52 \pm 0.17$
002609+383132	*B3 0023+382	
002614-200455	PKS 0023-20	
002627-323652	NVSS J002627-323653	K _s >14.20
002649+141236	SDSS J002649.21+141237.8	$u{=}22.58{\pm}3.77; g{=}21.11{\pm}0.28; r{=}19.41{\pm}0.09; i{=}18.65{\pm}0.08$
		z=18.57±0.27
002651+355614	*87GB[BWE91]0024+3539	
002722-104800	SDSS J002722.71-104759.2	$u{=}20.85{\pm}0.68;g{=}19.72{\pm}0.09;r{=}17.84{\pm}0.03;i{=}17.20{\pm}0.02$
		$z=16.81\pm0.06; b_J=20.19\pm0.17$
002750 - 100525	SDSS J002750.60-100524.4	$u{=}20.57{\pm}0.70; g{=}20.44{\pm}0.14; r{=}18.49{\pm}0.10; i{=}17.85{\pm}0.09$
		z=17.57±0.12
002844-095424	SDSS J002845.07-095426.8	$u{=}20.97{\pm}1.01;g{=}19.73{\pm}0.12;r{=}17.99{\pm}0.05;i{=}17.43{\pm}0.05$

АСТРОФИЗИЧЕСКИЙ БЮЛЛЕТЕНЬ том 64 № 3 2009

Таблица. (Продолжение)

Название	Другое название	Зв. вел.
		$z=17.18\pm0.15; b_J=20.29\pm0.17$
002913+345654	B2 0026+34	
003048+411051	4C +40.02	
003051+452147	*4C +45.02	
003221 - 240505	PKS 0029-243	
003314-003203	SDSS J003327.37-003245.9	$g{=}20.60{\pm}0.16; r{=}18.71{\pm}0.07; i{=}17.96{\pm}0.06; z{=}17.75{\pm}0.12$
003324-214158	PMN J0033-2142	
003414+392416	*3C 013	V=(22.50);H=17.00±0.12;I=22.14;J=17.83±0.17;K=16.36±0.10
		R=21.24
003428 + 403552	*B3 0031+403	
003443+154836	SDSS J003453.76+155017.4	$u = 19.86 \pm 0.34; g = 20.51 \pm 0.24; r = 18.96 \pm 0.06; i = 18.12 \pm 0.07$
		z=17.49±0.13
003453+413130	B3 0032+412	
003539-181648	6dF J0035396-181652	
003542-101426	SDSS J003542.43-101418.8	$u = 20.52 \pm 0.47; g = 20.81 \pm 0.23; r = 18.85 \pm 0.05; i = 18.08 \pm 0.05$
		$z=17.64\pm0.14$
003647+010309	SDSS J003659.64+010316.0	$u{=}21.71{\pm}0.87; g{=}20.26{\pm}0.08; r{=}18.36{\pm}0.03; i{=}17.74{\pm}0.02$
		$z=17.56\pm0.05$
003653+444320	4C +44.02	
003726-335315	J2172.17C: c	
003744+131958	3C 016	H=16.86±0.12;K=15.91±0.07
003825-225306	*PMN J0038-2253	
003830-212004	PKS 0035-216	$H{=}15.39{\pm}0.04; J{=}16.29{\pm}0.04; K{=}14.55{\pm}0.04$
003936+204911	MG3 J003938+2049	

БЛАГОДАРНОСТИ

При исследовании использовалась база данных внегалактических объектов NED (NASA/IPAC Extragalactic Database). Авторы также использовали базу данных радиоастрономических каталогов CATS [28, 29] и систему обработки радиоастрономических данных FADPS⁴ [30, 31]. Работа была поддержана грантом "Ведущие научные школы России" (школа С. М. Хайкина). О.В.В. благодарит за частичную поддержку РФФИ (проект № 07-02-01417-а).

СПИСОК ЛИТЕРАТУРЫ

- 1. G. Hinshaw, J. L. Weiland, R. S. Hill, et al., Astrophys. J. Supp., submitted (2008), arXiv:0803.0732.
- 2. D. P. Schneider, P. B. Hall, G. T. Richards, et al., Astronom. J. **134**, 102 (2007).
- 3. E. Komatsu, J. Dunkley, M. R. Nolta, et al., Astrophys. J. Supp., submitted (2008), arXiv:0803.0547.
- 4. Н. С. Соболева, Диссертация на соиск. уч. степ. докт. физ.-мат. наук (Санкт-Петербург, 1992).
- O. V. Verkhodanov, A. I. Kopylov, Yu. N. Parijskij, et al., Bull. Spec. Astrophys. Obs. 48, 41 (1999), astro-ph/9910559.

⁴http://sed.sao.ru/~vo/fadps_e.html

- O. V. Verkhodanov, Yu. N. Parijskij, N. S. Soboleva, et al., Bull. Spec. Astrophys. Obs. 52, 5 (2001), astro-ph/0203522.
- O. V. Verkhodanov, A. I. Kopylov, O. P. Zhelenkova, et al., Atsron. Astrophys. Trans. 19, 663 (2000), astro-ph/9912359.
- C. J. Willot, S. Rawlings, M. J. Jarvis, and K. M. Blundell, Monthly Notices Roy. Astronom. Soc. 339, 173 (2003).
- 9. O. V. Verkhodanov, A. I. Kopylov, Yu. N. Parijskij, et al., Astronomy Lett. **31**, 221 (2005), arXiv:0705.3046.
- M. J. Disney, J. D. Romano, D. A. Garcia-Appadoo, et al., Nature 455, 1082 (2008), arXiv:0811.1554.
- M. L. Khabibullina and O. V. Verkhodanov, Astrophys. Bull. 64, 123 (2009).
- 12. R. D. Dagkesamanskii, Nature, 226, 432 (1970)
- 13. G. Blumenthal and G. Miley, Astronom. and Astrophys. **80**, 13 (1979)
- 14. Yu. N. Parijskij, W. M. Goss, A. I. Kopylov, et al., Bull. SAO **40**, 5 (1996)
- Yu. N. Parijskij, W. M. Goss, A. I. Kopylov, et al., Astron. Astrophys. Trans. 18, 437 (1999)
- C. de Breuck, W. van Breugel, H. J. A. Röttgering, and G. Miley, Astronom. and Astrophys. Suppl. Ser. 143, 303 (2000)
- 17. G. Miley and C. De Breuck, Astron. Astrophys. Rev. 15, 67 (2008)
- C. De Breuck, W. van Breugel, S. A. Stanford, et al., Astronom. J. **123**, 637 (2002)
- 19. A. I. Kopylov, W. M. Goss, Yu. N. Parijskij, et al., Astronom. Lett. **32**, 433 (2006), arXiv:0705.2971
- 20. O. V. Verkhodanov, Yu. N. Parijskij, and A. A. Starobinsky, Bull. SAO **58**, 5 (2005), arXiv:0705.2776

- 21. O. V. Verkhodanov and Yu. N. Parijskij, Bull. SAO **55**, 66 (2003)
- O. V. Verkhodanov and Yu. N. Parijskij, in *Particles and Cosmology*, Proc. 14th Internat. School, Ed. by S. V. Demidov, V. A. Matveev, and V. A. Rubakov, p. 109 (2008)
- O. V. Verkhodanov and Yu. N. Parijskij, *Radio* galaxies and Cosmology, (Fiz. Mat. Lit., Moscow, 2009)[in Russian](in press).
- 24. D. P. Schneider, P. B. Hall, G. T. Richards, et al., Astronom. J. **134**, 102 (2007)
- 25. J. J. Condon, W. D. Cotton, E. W. Greisen, et al., Astronom. J.115, 1693 (1998).
- 26. R. L. White, R. H. Becker, D. J. Helfand, and M. D. Gregg, Astrophys. J **475**, 479 (1997).
- O. V. Verkhodanov, M. L. Khabibullina, M. Singh, et al., in *Practical Cosmology*, Proc. Internat. Conf. "Problems of Practical Cosmology", Ed. by Yu. Baryshev, I. N. Taganov, and P. Teerikorpi, Russian Geograph. Soc., St. Petersburg, V.II, 247 (2008)
- O. V. Verkhodanov, S. A. Trushkin, H. Andernach, and V. N. Chernenkov, in *Astronomical Data Analysis Software and Systems VI*, Ed. by G. Hunt and H. E. Payne, ASP Conf. Ser., **125**, 322 (1997), astro-ph/9610262.
- 29. O. V. Verkhodanov, S. A. Trushkin, H. Andernach, and V. N. Chernenkov, Bull. SAO 58, 118 (2005), arXiv:0705.2959
- O. V. Verkhodanov, in Astronomical Data Analysis Software and Systems VI, Ed. by G. Hunt and H. E. Payne, ASP Conf. Ser., 125, 46 (1997).
- 31. O. V. Verkhodanov, B. L. Erukhimov, M. L. Monosov, et al., Bull. SAO **36**, 132 (1993).

CATALOG OF RADIO GALAXIES WITH z > 0.3. II: PHOTOMETRIC DATA

M.L. Khabibullina, O.V. Verkhodanov

We describe the procedure of the construction of a sample of distant (z > 0.3) radio galaxies using the NED, SDSS, and CATS databases. We believe the sample to be free of objects with quasar properties. This paper is the second part of the description of the radio galaxies catalog we plan to use for cosmological tests. We report the photometric parameters for the objects of the list, and perform its preliminary statistical analysis including the construction of the Hubble diagrams.

Key words: radiosources