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A convective model of differential rotation of the Sun
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Abstract. A model of convection in the upper layers of the Sun through gaseous bubbles
of spherical shape is considered. Simplified assumptions are made of thermodynamic spherical
isotropy of the Sun, a sharp boundary between the radiative part and the convective layer,
absence of friction and involving of surrounding gas into the bubbles under their movement. It
is shown that when emerging in the layer of turbulent gas, the bubble rotates about the axis
running through its center parallel to the polar axis of the Sun. When emerging, the bubble is
flown circularly past by the surrounding gas and the Zhukovsky (Magnus) force come into play,
and, because of the rotation of the Sun, the Coriolis force also begins to work. The combined effect
of these forces cause acceleration of the bubble in the direction of rotation of the Sun. As the
bubbles dissipate in the outer regions of the Sun, these regions begin to rotate faster with respect
to its central part, the acceleration gained being greater at the equator in comparison with that
at the poles. The differential rotation effect is shown to rise with increasing density of the heat
flow, of the distance passed by the bubbles from the moment they originated to dissipation, of the
thickness of the convective layer and to decrease with increasing dynamic friction coefficient. The
derived theoretical results agree with the observed pattern of differential rotation of the visible

surface of the Sun.
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1. Introduction

The differential rotation of the Sun has been es-
tablished reliably (Tossul 1982). The equatorial re-
gion rotates faster than the high latitude solar sur-
faces. The empirical relationships derived by differ-
ent authors are distinguished insignificantly. From the
known formula of Howard and Harvy (Tossul, 1982)
the round-the-clock revolution of the surface

e(y) = 13,76 — 1,745in*p — 2,198in*y [°/24"] (1)

in the equatorial region is 1.4 times as large as in
the polar regions (1 is the heliocentric latitude). The
differential rotation is characteristic of many other
stars and also of Jupiter.

Originally a two-dimensional model of different ro-
tation was proposed. According to this model the vol-
ume was divided by conic surfaces corresponding to
the unchanged heliocentric latitude (Fig. 1). Further
it was supposed that the natural convection (under
the action of the buoyancy force) is realized through
the bubbles heated more than the surrounding gas.
The bubble, as it floats up, remains inside the origi-
nal conic surface since the buoyancy force is directed
along the radius. That is why, convective flows of the

neighboring cones do not interact and the meridional
gas flows are absent. The babble preserves the angu-
lar momentum and therefore its tangential velocity
(circular in the latitudinal direction in the inertial
frame) decreases as it floats up (Fig.2). As the bub-
ble dissipates at the surface of the Sun, the angu-
lar momentum is transferred from the bubble to the
surrounding gas, which is accompanied by decelera-
tion of rotation of the outer layers. This decrease is
greater in the equatorial region than in the polar re-
gions. Allowance for the Coriolis force yields the same
result when treating the movement of the bubble in
the rotating coordinate system associated with the
solid-body rotating central part of the Sun.

However, the opposite is observed: the angular ro-
tational velocity of the equatorial region of the Sun
is higher than that of the polar regions. Because of
this the two-dimensional model was recognized as an
inadequate one and a number of models of differential
rotation were suggested. To explain the real pattern
in these models, there were considered, for instance,
the supposed meridional gas flows deep in the Sun
and at its surface, strong magnetic fields (Vandakurov
1999), particular character of turbulence etc. The hy-
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Cone surface

Figure 1: The meridional section of the Sun.

drodynamic substantiation of these models is not con-
vincing enough. Observational data suggest that the
meridional flows are not significant at the surface of
the Sun.

A refined two-dimensional model of thermody-
namics of the upper layers of the Sun is proposed
in this paper, which explains the accelerated rotation
of its surface in the equatorial region in comparison
with the polar ones.

2. Original propositions and assump-
tions

Some known facts, adopted notions and simplified as-
sumptions concerning the structure and parameters
of the Sun having a compromise character are pre-
sented below. The shape of the Sun is adopted to be
spherical, its ellipticity due to rotation is not taken
into account. The central, non-convective part of the
Sun (its radius is 7y, in which nearly all its mass is
concentrated (Fig. 1) rotates as a solid body, the vec-
tor of the angular velocity w; is directed northward.
The dynamic processes in the upper layers of the Sun
have practically no effects on its central part. The
statistical characteristics of the thermodynamic pro-
cesses on the Sun are not time-variable. The Sun is
spherically uniform and its heat capacity c,, temper-
ature T, specific heat flow q, as well as other ther-
modynamic characteristics do not depend on the he-
liocentric coordinates.

Energy is generated in the central part of the Sun
and transmitted to the lower boundary of the convec-
tive layer by radiative transfer. The upper convection
layer r5 is equal to the visible radius of the Sun. The
depth of the convective layer is the same everywhere,
independent of the heliocentric latitude and is not
large, Ar =r; — 1 << 72.

In convection the heated gaseous bubbles float up
to the surface of the Sun, and the surrounding gas
settles down on their place. The gas temperature in-
side the bubble is higher (T; > T.), while the density
is lower (p; < p.) than the corresponding parameters
of the surrounding gas at the same height. A bub-
ble originating at a distance R from the center of the
Sun (R > r;) passes then a certain way [ in the ra-
dial direction and dissipates at a distance R + [ from
the center. We believe that the [ is the same for all
bubbles and not large (I << Ar). The initial size and
mass of the bubbles are such that they are practically
isolated from the surrounding gas, and in the process
of emergence no considerable change in their masses
and temperatures occurs as a result of involving of
surrounding gas into the bubbles and heat exchange
of bubbles with the surrounding gas. The expansion of
the bubbles as they emerge and the adiabatic cooling
accompanying this expansion do not affect the effects
we are interested in. The dynamic equilibrium of the
bubble moving at a constant speed in the surround-
ing gas is established by its shape close to a sphere
(Kaplan, Nesis 1998). Thus, to a quasi-stationary ap-
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Figure 2: The equatorial section of the Sun; the trajectory of the bubbles from the previous (A) and suggested
(B) models in the inertial (B) and rotating coordinate system.

proximation, the bubbles are spherically symmetric.
Assume that the radius of the bubbles is smaller than
the depth of the convective layer, R, < Ar, so the gas
density at its surface is practically unchangeable.

In consequence of friction the vorticity of the sur-
rounding gas (Loitsyansky 1987) is transmitted to the
bubble as it forms and moves. Owing to this, the bub-
ble rotates about the polar axis, running through the
center, at an angular velocity equal to the angular
velocity of the surrounding gas. In turn, the rotation
favors equalization of temperature inside the bubble
and its thermal homogeneity (internal barotropy). In
conjunction with the sphericity the thermal homo-
geneity leads to non-orientation of the bubble.

Under the action of the buoyancy force the bubble
acquires high speed, but this speed is lower than that
of sound. The movement of the bubble at this velocity
does not cause significant changes in the gas density
in the region of flowing around and its surface either,
as compared to the free medium at the same height
(Kaplan 1993; Loitsyansky 1987). The forces affect-
ing the bubble in a tangential direction are weaker
than those affecting in a vertical direction. This is
why, despite the action of these forces, the direction
of the bubble movement is close to radial when ob-
serving in the rotating coordinate system connected
with the layer of the gas surrounding the babble. The
bubble, when floating up, remains inside the initial
conic surface characterized by the unchangeable he-
liocentric latitude. Because of this, the general three-

dimensional pattern of convection on the Sun is, in
fact, an aggregate of two-dimensional patterns inside
individual conic surfaces.

3. Convective movement of bubbles in
the equatorial plane of the Sun

3.1. Dynamic characteristics of the gas

First, we consider a one-dimensional model of rotat-
ing gas in the equatorial section of the Sun. Here we
use the known relationships (Loitsyansky 1987). The
gas in the plane of the section moves in the inertial
frame at a velocity v(r), which is dependent on the
distance to the center 7 and independent on the angle.
Since the radial velocities have only polar components
in this case, they may be represented as scalar quan-
tities. The angular global velocity of rotation of the
gas layer located at the distance r near the center of
the Sun is equal to

wylr) = 10, @

The angular local velocity of rotation of matter in
this layer is

wi(r) = %rot v(r) = % (ng)r)) =
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It follows from (2, 3) that

dv(r) )
5 = 2wl(r1) - wg((:)), ”
wi(r) = wy(r) + 3" (;r .

In the coordinate system related to the mentioned
layer and rotating at an angular velocity wy(r) the
gas rotates at the angular velocity wi(r) — wy(r). At

Y = 2 (r) = w(r) the gas rotation in the layer
is that of a solid body, while at % = — %, wi(r) =0

it is vortex-free. The gas rotates as a solid body in
the central part of the Sun (r < r1), where wy(r) =
ws = Const. The mutual sliding of the gas layers is
characterized by the component of the tensor of the
deformation rates

—
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<
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def v(r) = 5

1 dwy(r) _
=57 jr = wi(r) — wy(r).

—
dr T (5)

Deformation is absent at solid-body rotation,
when w; (1) = wy(r).

3.2. The theory of a way of mixture

The theory of a way of mixture of Prandtl (Loitsyan-
sky 1987) is generally used in calculating turbulent
stresses arising at stratified flow of liquid and forced
convection. We will make use of this method for calcu-
lating stresses springing up with natural convection
under the action of gravity. Replace the continuous
distribution of the bubbles by stepwise (Fig. 2, 3).
Compare the way of mixture of Prandtl with the way
from origin to dissipation of the bubble. Consider a
certain gas layer located between the circumferences
R, R +1 in the region of convection (r; < R < r2).
The angular velocities of rotation of matter w;(r) and
the layer as a whole wy(r) change in a thin layer
(I < Ar) insignificantly and are assumed to be equal
to the quantities at the lower boundary of the layer
(wg = wy(R) = wy(r), w = wi(R) = wi(r)).

To the lower boundary (r = R) refer the bubbles
originating at a distance of £{/2 from it. To the upper
boundary (r = R+ 1) refer the bubbles dissipating at
a distance +!/2. Suppose that the processes of for-
mation, emergence and dissipation of the bubbles are
time separated. The bubbles first form completely at
the lower boundary of the layer and only after that
they begin to float up. Their dissipation occurs at
the upper boundary. Interpret the movement of the
bubble as a strongly localized process (Kaplan 1993;
2000). In this local process the bubble itself is a nu-
cleus, and the region around it, where the downward
(replacing) motion of the gas occurs as the bubble
moves upward, is the pass-over region. It has no fixed

boundaries with the external gaseous medium. Fric-
tion and power interaction of the region encompassed
by the local process with the gas layer outside of the
pass-over region are absent.

Introduce a reference system with the origin at
the center of the Sun, which rotates with the angu-
lar frequency of the layer w, together with the gas
located at the lower boundary of the layer being dis-
cussed (r = R). The initial tangential velocity of the
bubble in this coordinate system, as well as that of
the surrounding gas, is equal to zero (v(R) = 0). The
velocity of the gas at the upper boundary of the layer
(r=R+1)is

dv

v (R+1)= (a—’l‘ _wg)l =2(w — Wy S (6)

where (4) is taken into account.

3.3. Mass and heat transfer by means of the
bubbles

Consider one of the bubbles which has a volume B
and a mass

m; = /pidV. (7
B

In accordance with the assumption made, the vol-
ume B and the mass m, the gas density p; and tem-
perature 7} inside the bubble and also the thermody-
namic characteristics of the surrounding gas are be-
lieved to be independent of the distance to the center
of the Sun (or may be reduced to the lower boundary
of the layer).

In the same volume of space outside the bubble
the mass is equal to

me = /pedV- (8)
B

The differential mass is

ﬂm=mrwu=/mdﬂ (9)
B

where pa = p; — pe & —-pi%; is the difference of gas
densities inside and outside the bubble, AT = T;=T..
It is obvious that the differential mass of the bubble
is negative.

The process of mass transfer in the layer can be
represented by the example of one bubble. The heat-
ing of the gaseous bubble as it forms causes outflow of
excess mass |ma| from its volume. This excess mass
is transferred from the lower to the upper boundary
of the layer since the masses of the central part of
the Sun and of the layer discussed remain unchanged
(Fig. 3). Then the emergence of a bubble of mass m;
from the lower to the upper boundary of the layer
occurs. The gas in the pass-over region occupies the
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Figure 3: The layer of mizing: the levels of origin — (1) and dissipation — (2); 1-3-2 — the trajectory of the
bubble; 2-4-1 — the conditional trajectory of the gas in the pass-over region; 5, 4, 6 — the lines of the flow.

volume taken up earlier by the bubble, and the mass
me sinks from the upper to the lower boundary. Then
equalization of temperatures between the bubble and
the surrounding gas takes place. In this process the
excess mass |ma| carried away from the bubble when
it formed comes to the bubble volume. After this, dis-
sipation of the bubble is completed and it ceases to
exist, losing individual characteristics.

Taking into account that a great number of bub-
bles take part in convection, one can somewhat sim-
plify the represented pattern: unite the processes of
formation, emergence and dissipation and consider
that when the bubble of mass m; floats up, the
same mass of gas sinks in the region of passing over,
m; = me—|mal. Thus, as the bubble crosses the layer
being treated from bottom upwards, these boundaries
are crossed simultaneously by the same mass of gas
in the pass-over region from top to bottom.

In the process of convection the following amount
of heat is driven to the upper boundary of the layer:

Qi = ¢pm;AT = —¢pmaTe, (10)

where AT = T; — T, is the difference of temperatures
between the bubble and the surrounding medium, ¢,
is the heat capacity of the gas at constant pressure,
(9) is allowed for. A unit volume is thought to contain
n bubbles of average differential mass ma , which float
up at an average radial velocity vp. The averaged
heat flow carried out by the bubbles through a unit
area during a unit time is equal to

q = (Qinvp) = —c,T, (manwvp). (11)

The mean specific flow of differential mass driven
from here to the surface during a unit time is equal
to

q
(manvp) T, (12)
Designate the absolute value of this flow as

A = [{manvp)|.

3.4. Dynamic characteristics of the bubble

Let us consider the movement of the bubble in the ro-
tating frame of axes connected with the lower bound-
ary of the convection layer. The bubble in the initial
position at the lower boundary of the convective layer
is immovable with respect to the surrounding gas in
this coordinate system. As the bubble moves in the
radial direction it is affected by the buoyancy force
depending on the differential mass and the force of
gravity on the Sun

Fp = —gma. (13)

When floating up under the action of the force
Fg, the potential energy of gravity —gmal changes
2

completely to the kinetic energy ™2, Thus, on the

way [ the bubble in the process of floating up gathers
a radial velocity

2magl
m;

VD Maz = - (14)

This quantity is the upper limit of the radial
component of the bubble velocity. Since in radial
movement the bubble rotates together with the gas
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Figure 4: Circular flow of the surrounding gas around
the bubble.

layer, then it is under the action of the Coriolis force
(Fig. 3). Besides, interaction between the pass-over re-
gion gas and the bubble occurs. The tangential com-
ponent of the momentum acquired by the bubble is
carried to the upper boundary of the layer and trans-
ferred to the surrounding gas as the bubble dissipates.

Represent the bubble in the flat model in the form
of a circle of radius Rs < l. Being in the gas layer at
the distance r from the Sun center (R <r < R+1),
the bubble rotates about its center at the angular
velocity w; together with the surrounding gas. At the
same time it moves under the action of the buoyancy
force at the velocity vp in a direction close to radial.

To calculate the force with which the pass-over
region affects the bubble, fix at some moment, of time
the inertial frame connected with the center of the
circle (Fig. 4). In this frame interprete the movement
in the radial direction as pass over by a homogeneous
flow of the surrounding gas. Assume that the tangen-
tial component of the linear velocity of the bubble is
lower than the radial velocity (v, << vp) and, there-
fore, the sense of the velocity vector is close to the
radial direction and its value is equal to vp. The in-
stantaneous gas velocity field near the bubble is a su-
perposition of two fields: the velocity field of the flow
passing over it in the radial direction and the velocity
field of the flow rotating around it. In circular pass-
ing over (Loitsyansky 1987), a force arises that acts
in the direction of rotation at a right angle to the ra-
dial velocity vector. Origin of this force is illustrated
in Fig.4. On the left side the pass-over and circula-

tion velocities have the same direction and are added
together at w; > 0, while on the right side they have
opposite direction and are subtracted. This is why
the velocity of the gas on the left side is higher than
on the right. In accordance with Bernoulli’s theorem,
the pressure on the right side of the circle is higher
than on the left, and the bubble is affected by a force
in the direction of rotation. According to the known
theorem of Zhukovsky the arising force is equal to

Fyp = —peITvs = pe Iup, (15)

where p., I are the density of the gas and the ve-
locity circulation at the outer boundary of the circle,
respectively, vg is the velocity of the gas relative to
the circle.
Find the circulation 7 = [ ¥ dl of the gas velocity
L

¥ near the contour of the area L, dl is the element
of the contour. The linear velocity of the gas at the
boundary of the circle is equal to v = w;Rgs. The
length of the boundary is 27 Rg, and the velocity
circulation is

I= Wy RS 27I'R5 = 20.)15‘ (16)
Substituting (16) into (15) obtain
Fpr = 2wvp pe S. (17)

In a three-dimensional representation the force af-
fecting the bubble depends on the thickness of the gas
layer Az (Fig. 5):

AFy =2wvp pe SAz =

(18)
=2wvp pe AV =2wvp Am,,

where AV, Am, are the volume of the bubble and
the mass of the replacing surrounding gas in its vol-
ume, respectively.

Treating a number of parallel sections (Fig. 5)
and considering that in the process of movement the
bubble rotates as a solid body, obtain from (16) the
Zhukovsky force (in some papers this force is named
the Magnus force) having an effect on the bubble as
it is circularly passed over.

Fy = 2mewevp, (19)

where m, = p.V is the mass of the surrounding gas
in a volume equal to the bubble volume.

According to Newton’s second law, the bubble af-
fects the gas in the pass-over region with the same
force, but in opposite direction.

’

Fﬂ,{ = —2mewe vp. (20)

The bubble rotates as a solid relative to the center
of the Sun together with the gas layer in which it is
situated at an angular velocity close to w,. Its radial
movement results in appearing of the Coriolis force.
This force is directed at a right angle to the direction
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Figure 5: Forces affecting the bubble as it moves in the rotating coordinate system and is passing over by the

surrounding gas.

of the bubble movement and in the direction opposite
to the rotation of the layer, and is equal to

(21)

In contrast to (19) the actual mass of the bubble
is involved in this formula. The negative sign corre-
sponds to the action of the force opposite to the layer
rotation. When floating up of a bubble of mass m; at
a speed vp the same mass of gas moves in the pass-
over region in the opposite direction at a rate -vp.
The Coriolis force will have an effect on the sink-
ing gas. Since the general direction of the velocity of
motion of matter in the pass-over region is opposite
to that of the bubble movement, and the masses are
equal, then the corresponding forces are different only
in sign

Fy = —2mwy vp.

F}’( = 2mwy Vp. (22)

Adding together (19) and (21), we obtain the com-
ponent of the force affecting the bubble tangentially:
F =Fy + Fg = 2 (wime — wym;) vp. (23)

Adding together (20) and (22), obtain the forces
having a tangential effect on the gas in the pass-over
region

(24)

which is equal to F' in value and opposite in direction.
Consider the case where the rotation is that of a solid

F = F;\,, + F}( = =2 (wme — wym;) vp,

body (w; = w,) and the densities of the bubble and
the surrounding gas are equal, so, me = m;. Then,
in correspondence with (23, 24) the acting forces are
equal to zero. On the other hand, as the bubble moves
(for instance, under its own momentum), at some
place the mass of the bubble is replaced by the same
mass of the surrounding gas, while in another place
the reverse takes place. Neither do change other local
parameters (linear and angular velocities). The po-
tential energy of the gravitating gas of the Sun as
a whole remains unchanged either, since the spatial
distribution of masses has not changed. Thus, the in-
tegrated forces (Loitsyansky 1987) having an effect
on the bubble and the pass-over region are equal to
zero in full agreement with the obtained result.
During the time of rising T' the bubble acquires
the tangential component of the momentum equal to

T
Kp =/th’:"2(w1me—wgmi) l.

0

(25)

Similarly, during the time of sinking T the gas in
the pass-over region acquires the tangential compo-
nent of the momentum equal to

T
K}):/F’dt%—2(w1me—wgm.i)l. (26)
0
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The mass m;, leaving the upper layers of the Sun,
has a momentum

K; =miv(R+1) = 2m;(w —wy) L. (27)

Thus the process of rising of the bubble and the
compensating sinking of the gas having the same mass
results in transport of the tangential component of
the momentum to the upper layer of the star

AK =Kp — K; =2(me —mj)w l = —2maw;l. (28)

As the bubble dissipates, the quantity AK is
transferred to the gas located above the gas layer be-
ing discussed. In conformity with the above said, the
gas in the pass-over region when crossing the upper
boundary of the layer, gains the initial momentum
determined by formula (27). In the process of sink-
ing, (26) is added to this momentum. Finally, when
crossing the lower boundary of the layer the momen-
tum

AK =Kp + K; = 2maw, L. (29)

is carried away.

Thus, as the gas sinks in the pass-over region a
momentum equal in value and opposite in sign to the
momentum carried over by the emerging bubble to
the upper level is driven to the lower level.

The momentum transported by the bubble to the
upper level is positive and favors accelerated rotation
of the upper part of the convection layer with respect
to the lower part. The tangential component of the
bubble velocity (relative to the upper boundary of the
layer considered) is equal to

vy = AK/m; = =2maw l/m;. (30)

From comparison of (14) and (30) it follows that
the condition

e
l< i9

2mawy?

is complied with.

Since ma << m;, then this inequality is met on
any reasonable assumptions concerning the path .
Consequently, the condition v; << vp is always met
as well.

Fig. 2 shows the movement of the bubbles in the
equatorial section of the Sun in accordance with the
existing model (A) and the proposed one (B). For
clarity, the trajectories of the bubbles are increased
up to the thickness of the convection layer, | = Ar.
Point 1 is the start of the radial movement of the
bubbles when observing in the inertial frame. The
arcs 12 correspond to the rotation of the central part
of the Sun during the time the bubble moves form
the depth outwards. In the inertial frame the paths
of the bubbles — 13, while in the rotating coordinate
system — 23.

3.5. Dynamic characteristics of the flat convec-
tion layer

We will further be concerned with the stress in the
layer caused by the flow of the bubbles. This quantity
is equal to the specific (per unit surface in unit time)
averaged value of the difference between the momenta
at the upper and lower boundaries.

Assuming the number of the bubbles in unit vol-
ume to be n, and their mean velocity vp, determine
the stress caused by the flow of the bubbles:

5 = — 4wl {manvp) = dwlA. (31)

The stress that springs up is compensated by the
frictional force (Loitsyansky 1987)
dR

Here the dynamic friction coefficient p is the sum
of the coefficients of molecular and turbulent friction.
The dynamic coeflicient of molecular friction depends
on temperature which is determined by the distance
r to the center of the star. In accordance with the
criterion of Richardson (Loitsyansky 1987), initiation
of forced convection and turbulence accompanying it
in deformation sliding of gas layers seems to be in-
evitable. The dynamic coeflicient of turbulent friction
depends on the rate of deformation. It does not seem
possible to take account of the ratio of the molec-
ular and turbulent components of friction and their
relation to other parameters. Assume the dynamic
coeflicient of friction to be constant, u = Const.

Taking into account that 7, = 75 and taking w;(r)
from (4), obtain the differential equation

duwy (R) duwy(R)
arCAARTR

After elementary transformation it assumes the
form

7p =2udef v(R) = (32)

pR=0 Y + 41 Aw,(R). (33)

dwge(R) 2h dR dR
= — =p— 34
w(R) 1-h R 'R’ (34)
where
2A 2lg 2h
h="2 = 2 = 35
' " pepTe’ 1-h (35)
The solution of equation (34) is
R\? AR
an®) = ()5 wsm (14950 us (9

where AR = R —r1, ws is the angular velocity of the
central non-convective part of the Sun rotating as a
solid body, the thickness of the convective layer was
considered to be small. Thus, the angular rotational
velocity of the surface in the equatorial region of the
Sun differs from the angular velocity of its central
non-convective part by Awg ~ p— ws.

At a very large friction coefficient (u>>2Ah=
0, p ~ 0) the velocity is practically independent of
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the radius (w, = Const) and the rotation is close to
that of a solid body. In the other extreme case where
the coefficient of friction is small (@ << 204, h ~
o0, p & —2), the rotation is close to vortex-free, at
which the angular velocity of the convective layer is
inversely proportional to the square of radius, the lin-
ear velocity is inversely proportional to the radius,
and the angular velocity of matter in the layer is equal

to zero:
-2
o “(5) 7
B = (2) ot wim=o.

Here, when going from the first to the second and
third formulae, (2) is used. In the intermediate case,
where 1 > 21A, p > 0, the angular velocity of the layer
increases with increasing radius, while in the opposite
relation (p < 21A) it decreases. When p = 2l 4 a sad-
den change in the coefficient p from infinite positive
to infinite negative values takes place. The extremely
large jumps in p are not quite correct physically and
appeared because of assuming the friction coeflicient
to be constant and independent of the rate of de-
formation. In more accurate calculations the depen-
dence of the turbulent friction coefficient on the rate
of deformation should be taken into account. In so
doing, instead of (34), we come to a non-linear differ-
ential equation. Within the framework of this paper
we restrict ourselves to consideration of the constant
u> 2lA.

4. Spatial model of convection

We have discussed a plane problem corresponding to
the equatorial section of the Sun (latitude 4 = 0). In
the general case (Fig.1, 5), at some latitude ¢ # 0, we
fix a surface outlined by the vector-radius as it rotates
from the center of the Sun. Inside this conic surface
the bubble rotates together with the layer of the sur-
rounding gas in a latitude circle. The buoyancy force
affects the bubble along the corresponding vector-
radius. The angular velocity vectors of the bubble,
of the surrounding gas, as well as of the Sun, are di-
rected to the pole. Resolve the linear radial velocity
vp of the bubble into components vps = vp Siny
and vp, = vp Cosy in the directions to the pole and
orthogonal to the polar axis. The movement of the
bubble in the direction parallel to the polar axis does
not give rise to lateral forces. The movement in the or-
thogonal direction causes the above-discussed effect.
Thus, in the case of arbitrary latitude it suffices to
substitute the linear velocity vy of the bubble and
the path [ in the previous formulae by the expres-
sions of their projections vp, = vp Cosy and [Cosy,

respectively. In the end, obtain a common formula
T = — 4wl Cosy (nmavp) = dwlAd Cosy. (38)

Although formula (38) corresponding to a flat
model of turbulent friction and low latitudes does not
take account of turbulent friction of convective layers
at high heliocentric latitudes, for the purpose of sim-
plification we apply it to the entire range of latitudes
3 < 900,

dwy(R)  4lACosy) dR _
we(R) ~ p—2lACosy R (39)
2hCosy dR dR
12 hCosyy R = p¥) R’
where
2h Cosyh AA g
PY) = T Cost hCost h= il (40)

¢p, T, are the averaged parameters of the convective
layer.
The solution to equation (39) has the form

oo ) = <£)p(¢);

" (41)

wg <1 +p(¢)%—f—2> wg.

According to (41), the angular velocity of the sur-
face of the Sun is wy(r2) = [°/24%):

() (1+p<w>%ﬁ) ws. (42)

Formula (42) has a clear sense. The surface of the
Sun rotates faster than its solid-body nucleus. The
difference in velocities between the surface and the
nucleus increases with increasing density of the heat
flow g, thickness of the convective layer and also path
[ covered by the bubbles from the moment of their
origin to dissipation, and also with decreasing turbu-
lent friction coeflicient . The angular velocity of the
Sun'‘s surface (1) decreases with increasing heliocen-
tric latitude ¢ in full agreement with observational
data.

The results of the calculations by (42) are pre-
sented in Table 1 and Fig. 6. The thickness of the
convective layer was considered to be equal to a quar-
ter of the radius of the Sun (£- = 3), the angular
velocity of the nucleus of the Sun rotating as a solid
body, ws = 9.83°/24" and the parameter h=0.37
were chosen so that a fit to (2) is ensured at the ends
of the interval (at the poles and equator). The theo-
retical relationship corresponds to experimental. The
difference is no more than 8% between the rotation
velocities at the equator and poles (3.87°/24%) and
2% in the rotation velocity of the surface of the Sun
in the region of the equator (13.7°/24")
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Table 1: The angular velocity of the Sun‘s surface rotation (°/24") as a function of heliocentric latitude ¢

P(deg) 0 10 20 30

40 50 60 70 80 90

Exper. (1) 13,7 13,7 13,5 13,2

12,7 12,0 11,2 10,5 10,0 9,83

Theory (40) | 13,7 | 13,5 | 13,3 | 129

124 | 11,8 |11,3 | 108 | 102 |9.83
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Figure 6: Differential rotation of the surface of the Sun.

5. Conclusions

It is assumed that convection in the upper layers of
the Sun is realized mainly by the gaseous bubbles of
spherical shape. Originally, a two-dimensional model
of the phenomenon was developed. The movement of
gaseous bubble is interpreted as a shift of the local
process in which the bubble plays the part of a solid
nucleus of spherical shape. Being in a layer of whirling
gas, the nucleus rotates about its axis and is concur-
rently involved in the radial movement. The nucleus
is affected by the Zhukovsky (Magnus) and Coriolis
forces. The combined action of these forces causes the
speed of the bubble to rise in the direction of rota-
tion of the Sun as a solid. In the course of dissipation
of the bubbles, acceleration of rotation of the outer
regions with respect to the central part occurs.

In the three-dimensional representation the accel-
eration in the equatorial region of the surface of the

Sun is higher than in the polar regions. In accordance
with the relations derived the differential rotation ef-
fect rises with increasing density of the heat flow in
convective heat transfer, distance covered by the bub-
bles from the moment of their origin to dissipation,
and depth of the convective layer on the Sun. With
increasing dynamic friction coefficient, the effect di-
minishes. The assumptions of thermodynamic spher-
ical isotropy of the Sun, absence of the transitional
layer and a sharp boundary between the solid-body
rotating central part and the convective layer, absence
of friction and involvement of surrounding gas into
the bubbles as the latter float up, and also the ap-
plication of the two-dimensional model at high helio-
centric latitudes essentially simplified the discussion.
They are not of fundamental character and do not
alter the qualitative pattern of the phenomenon, but
with their refinement some correction of the relation-
ships and numerical coefficients is possible.
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The theoretical results of the present paper are
consistent qualitatively and (with appropriate choice
of parameters) also quantitatively with the observed
pattern of differential rotation of the visible surface
of the Sun. Subsequently, it is desirable to substitute
actual physical parameters into the derived formulae.
Many of them can be estimated on the basis of ob-
servations of the globular pattern of the surface of
the Sun, refined models of its structure and temper-
ature stratification. The most severe difficulties will,
probably, arise with the accuracy of calculation of the
friction coefficient. These may be due to both the in-
tricacy of the phenomenon (concurrent existence

of forced and free convection) and the known difficul-
ties in the theory of turbulence.
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