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Abstract.

A method for mode filtering of astronomical images with integer type pixels is de-

scribed. It is implemented as an addition to the method of fast median filtering. The mode is
derived in four stages: (1) the median of the pixel values in the filtering window is derived; (2) the
shortest histogram interval containing half of the number of pixels is determined; (3) the (new)
median in this interval is derived; (4) the weighted average of the pixel values in the vicinity of
the new median is calculated. Mode filtering removes small scale images (cosmics, stars) more
efliciently than median filtering. Thresholded mode filtering, as well as thresholded median fil-
tering, preserves stellar peaks. The computing time is about 3 times longer than in the case of
median filtering. As examples of processing, a simulated and a real frames are given.
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1. Introduction

Median filtering is the main representative of the rank
statistic methods (Kim & Yaroslavskii, 1986; Pasian,
1991). It was first introduced by Tukey (1971) and
used for removing outliers from economic data rows.
As opposed to the average, the median is almost in-
dependent of single impulse noise events, i.e. appears
to be a robust estimation of the mean value. For this
reason the median filtering is widely used for smooth-
ing or cleaning of astronomical frames.

Let an approximately round pixel window with
diameter W slides over the rows of the frame. Let i
and j be the index numbers of the rows and columns
of the frame, M(i, j) be the pixel value, correspond-
ing to the current center of the median window and
MED(, j) is the median of the pixel values within
the window. Then in its simplest application median
filtering MED(i, j) changes M(i, j) and a smoothed
frame is produced. In the application of the mode fil-
tering the mode MOD(i, j) must play the role of the
median MED(i, j)-

The process of median (or mode) filtering may be
ruled by two independent parameters. One of them
is the diameter W of the smoothing window, besides
larger W causes stronger smoothing. The other one is
the threshold value T = S- C, which is the product of
the estimated width S of “the sigma” of the local his-
togram and an optional threshold coefficient C (usu-
aly C = 3). Then the median MED(i, j) changes the
current pixel value M(i, j) if [ MED(i,j) —M(i,j)| > T.
It must be noted that when a stellar image occurs
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in the median window, the local histogram becomes
wider than that in the case of pure background. Then
the threshold value T grows up naturally and the
peak of the stellar image may be omitted without
change. This is an efficient method for cleaning im-
pulse noise (cosmics) from astronomical frames pre-
serving details of interest (peaks of stellar images)
(see also Sun & Neuvo, 1994). Though, in the case of
a “big pixel sampling” the thresholded median filter-
ing can not preserve efficiently the peaks of the bright
stars and it must be applied with care.

Median filtering is a very important method in as-
tronomical image processing with at least three main
applications. First, using a big filtering window (e.g.
51-201 pixels) one performs decomposition of the
frame into two frames — smoothed and residual. The
smoothed frame contains the large scale shape of the
background or of the large extended object (galaxy,
comet) and the residual frame contains the small and
intermediate scale details of interest (stars, stellar ag-
gregates). Second, using an intermediate window (15—
35 pixels), one can detach the faint and intermediate
stellar images. Then the smoothed frame may show
the intermediate scale structures of the object (spi-
ral arms of a galaxy) and the residual frame contains
stellar images on an approximately flat background.
Third, the thresholded median filtering with a small
window diameter (3-5 pixels) is used for removing
impulse noise {cosmics, bad pixels).

The fast median filtering algorithm for frames
with integer pixel values has been proposed by Huang
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et al. (1979) (see also Frieden, 1980; Huang, 1981).
One implementation of this method was described
in detail in the first paper of this series (Georgiev,
1996a). In the case of floating point pixel values the
median derivation forces preliminary ranging of the
data in the window which is a slow procedure. Our
tests show that in the case of integer pixel values the
median filtering method is ten times faster than the
respective floating point implementation in MIDAS
and IDL. For this reason we develop the method of
mode filtering for frames with integer pixel values.
The mode of the local histogram of the frame is
the most frequent brightness value and for this rea-
son the mode filtering must be more resistant against
noise or small “noise-like” details in the frame. Com-
pared to median, mode filtering is a more robust and
less impulse noise dependent method. The present pa-
per describes a method for mode filtering based on
preliminary use of the fast median algorithm.

2. Certain methods of mode derivation

Although the mode of a histogram is an easy para-
eter to define, it is difficult to determine it well for
frame filtering. In the usual case of poor or sparse
local histogram the simple derivation of the mode
as the most populated histogram column is useless.
The reason is that it may coincide accidentally with
the local maximum or minimum pixel value, being
too far from the true most probable value. The prob-
lem is really very complicated aud it seems there are
no convenient ways for robust and easy estimation of
the mode yet. This situation is discussed widely in
the papers of Coleman & Andrews (1979) and Davies
(1988). Though, two certain methods may be pointed
out.

First, the mean value of the histogram may be
used together with the median for mode deriving. In
the case of big filtering window, when the histogram
is richly populated, the natural range of the “three
means” is

mode < median < average or average < median < mode.

Then the ancient method for mode deriving is
the approximation (Yule & Kendal, 1965).

mode = average — 3(average-median)
Unfortunately, in the cases of bimodal, sparse or
poorly populated histogram, the natural range of
the “three means” may be changed. After testing we
found that this method is too inaccurate and ot suit-
able for general application.

Second, iterative solution of the problem of mode
deriving, called “truncated median”, is proposed by
Davies (1988) as follows. We again assume that the
natural range of the three means is valid and note

that the median lies closer to the mode end of the
histogram rather than to the average end. So, the
mean value is likely to be on the side where the range
of the pixel values is high and where the histogram
must be truncated. It is asserted that the most sen-
sible place to truncate the histogram is such that the
original median bisects the total range of the trun-
cated histogram. The procedure is repeated till the
distances between the median and the ends of the
truncated histogram are equalized. However, the al-
gorithm of this process is really very complicated and
slow. After testing we decided not to use it.

Further we investigated another, more sophisti-
cated approach. It has been proposed by Rousseew &
Leroy (1986) as alternative to the classical method of
the least squares for deriving the parameters of a lin-
ear regression. This approach is based on the method
of the least median of the squares of the deviatious. In
the particular case, for robust estimation of the mode,
it involves deriving the mean value of the most narrow
histogram interval, containing half (or slightly nore)
of the total histogram. Our tests show that a bet-
ter result is reached by deriving a new edian of the
found interval and (optionally) deriving a weighted
average in a subinterval centered on the new median.
We find this approach very powerful and describe it
below.

3. The proposed method and its algo-
rithm

Mode filtering is implemented in a computer program
written in C-language, as in the case of mnedian filter-
ing, described by Georgiev (1996a). The program ap-
plies a circular window on the whole framne, including
the periphery. The process of big images is foreseen
and only a horizontal band of the frame. with a width
of W rows, is stored currently in the proeessor mem-
ory.

The classical fast median algorithm {Frieden,
1980; Huang, 1981; Georgiev, 1996a) based on the lo-
cal histogram is used for preliminary deriving of the
local median MED. In the case of the first pixel iu the
row the histogram is initialized and the MED is found
directly by counting the histogram columus. Further,
the process is significantly faster. Ouly the peripheral
pixels of the window are removed and added to rhe
histogram. The median value changes slowly along
the frame, and later, the search for the current me-
dian may be done by fast algorithm. beginning from
the old median. For this reason the auxiliary num-
ber SUM, which contains the suin of the histogram
columns H{N] with numbers N less or equal to MED,
is used. [t follows the changes of the left half of the
histogram. The value of SUM changes with removing
and adding the contribution of the peripheral win-
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dow. If K1 and K2 are the values of such pixels, the
process may be written in C-language as

H[K1]--; if (K1<=MED) SUM--; /* removing */
H[K2]++; if (K2<=MED) SUM++; /* adding */

Let TOT be the total of the pixels in the window
and HLF be half of TOT (the integer number from
0.5*TOT+1). Then the process of defining the me-
dian (always from left to right in the histogram body)
is

while(SUM >=HLF) { SUM-=H[MED]; MED--; }
/* moving back */

while(SUM < HLF) { MED++; SUM+=H[MED]; }
/* moving forward */

We must derive also the bounds M1 and M2 of the
“one sigma” histogram interval, excluding the his-
togram tails with values Q1 and Q2. Assuming gaus-
sian distribution, we introduce Q1 = Q2 =0.16*TOT.
Then using the auxiliary sums S1 and 52, we find M1
and M2 as follows:

M1=MED; S1=SUM;

while (S1>Q1) { S1-=H[M1]; M1--; } Mil++;
M2=MED; S2=TOT-SUM+H[MED];

while (S2>Q1) {S2-=H[M2]; M2++;} M2--;

Now the inner (“one sigma”) interval of the histogram
is placed between M1 and M2. It contains TOT-Q1-
Q2 = 0.68*TOT pixels. If the mode filtering is not
preferred in the application, the values M1 and M2
may be used for thresholded median filtering (see Part
1).

Further we give the most important part of the
method — determining the bounds of the shortest in-
terval of the histogram H[N], which contains at least
half of the pixel amount HLF. Let us denote the
bounds of this interval again by M1 and M2. First
we must find the number NO of the first nonzero col-
umn of the histogram. We search for MO beginning
from M1, using the auxiliary sum S:

MO=M1; S=S1;
while (S>0) { S-=H[MOJ; MO--; } MO++;

Let us denote the bounds and the size of the current
checked histogram interval by L1, L2 and 1.21. The
first such interval, containing at least HLF pixels is
already known. Its bounds are MO and MED. That is
why we initialize the values of M1, M2, L2 and M21
as follows:

M1=MO; M2=L2=MED; M21=M2-M1;

Generally, we may find a few intervals with minimal
length and in such a case we must choose the most
populated of them. Therefore we must control also
the pixel amount SS in such intervals. If the most
populated intervals again are more than one, we use
the most left of them.

Let S be the number of pixels in the current
checked interval. The left bound L1 of the possible
intervals lies between M1 and NED and we change it
in a loop. We subtract H[L1], H[L1+1], ... from S till
reaching S < HLF. Then we add H[L2}, H[{L2+1], ...
to S and immediately after reaching S >= HLF we
compare the size and the pixel amount of the interval
with the previous intervals. The respective and the
most complicated part of the program is

S=SUM-H[MO]; SS=HLF;

for (L1=MO+1; L1<=MED; Li++) if (H[L1]>0) {
while (S<HLF) { L2++; S+=H[12]; } L21=L2=L1;
1f (L21==M21 && S>SS) { SS=S; Mi=L1; M2=L2; }
if (L21<M21) A

M21=L21; M1=L1; M2=L2; SS=HLF; } S-=H[L1]; }

The bounds M1 and M2 of the desired interval are
found. The next operation is estimation of the mode
MODI1 in the interval. First we find it as a (new)
median inside the bounds M1 and M2. The value of
M21 is small and the direct computation is fast. Here
the comparing sum QWT is a quarter of the total
histogram:

MOD1=M1; S=H[MOD1}; while (S<QWT) { MOD1++;
S+=H[MOD1]; }

In the end we derive (optionally) another estimation
of the mode -—— MOD2. It is a weighted average with
coeflicients C[ND], where ND is the distance between
the number of the histogram column N and the pre-
vious estimation of the mode MOD. The computa-
tions spread out on a subinterval, centered on MOD,
with half length of NDMAX. The value NDMAX is
an input parameter of the program, which must be
less than the mean expected “one sigma” width of
the local histogram. In our case we use NDMAX=9.
The coefficients C[ND] may have, e.g., gaussian dis-
tribution. However, we use coefficients corresponding
to 2nd degree polynomial fit of the data. Such coef-
ficients are derived for smoothing the data row and
frame in the paper of Georgiev (1996b). The text of
the program is

$=85=0; for (N¥M1; N<=M2; N++) { ND=abs(N-MOD1):
if (ND<NDMAX) { D=(double)H[N]*C[ND]; D+=S; SS+=

S*(double)N; } }
MOD2=(int) (SS/S+0.5);

The mode value may be used in the same manner as
the median value in the median filtering. The bounds
M1 and M2 also may be used for thresholded mode
filtering as in the thresholded median filtering. How-
ever, in such a case the “one sigma” gaussian interval
must be found as 1.5¥M21/2 (see Rousseew & Leroy,
1986).
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Figure 1. Removing the stellar images from a simulated frame using window with a diameter of 15 pizels: left
part — original; middle part — after median smoothing; right part — after mode smoothing.

4. Comparisons between median and
mode filtering

An example of median and mode filtering in a sim-
ulated stellar field is shown in Fig.1. The signal and
noise parameters of the field are close to one 20 min
CCD exposure of the 2 m RC telescope of the Rozhen
NAO in V band. The original frame (on the left part
of Fig.1) contains gaussian stellar images of 19-24
mag with sizes (FWHM) about 2.5 pix and added
noise. The smoothing window diameter is 15 pix. The
result of the median smoothing (on the middle part
of Fig.1) contains the pedestals of the stellar images,
evern in the cases of faint stars. The result of the mode
smoothing (on the right part of Fig.1) contains ne-
glected pedestals of stars, even in the cases of rela-
tively bright stars.

Another example of the median and mode filter-
ing is given in Fig.2. It is made on a part of a V
frame of the dwarf galaxy Cas 1 with an exposure
of 10 min, obtained with the 2 m Rozhen telescope.
The telescope is equipped with a Photometrics CCD
camera with a size of 1024 x 1024 pixels. The scale is
0.32" /pix. The size of the stellar images in this case
is 1.6" or 5 pix.

The frame in Fig.2 is preliminary processed with
the Rozhen software. The cosmics are cleaned by
thresholded mode filtering with a window diameter
W = 5 pix and threshold T = 3 - sigma. The used
part of the original frame (on the left part of Fig.2)
contains a few dozen stellar images and noise. The
size of the next filtering window is 23 pixels. The re-
sult of the median smoothing (on the middle part of
Fig.2) shows the large scale shape of the galaxy and
remnnants of bright stellar images. The result of the

mode smoothing (on the right part of Fig.2) shows
again the shape of the galaxy. It is not so smooth as
in the previous case, but the stellar remnants, even
in the cases of bright stars, are very faint.

5. Conclusions

The described method for mode filtering is more effi-
cient than the median filtering in the cases of impulse
noise cleaning and stellar images removing. It must be
especially noted that the thresholded mode filtering
removes outlier pixel values in the periphery of the
stellar images more efficiently than the median filter-
ing. At the same time it preserves the stellar peaks
as well as the thresholded median filtering does (see
Part 1).

One disadvantage of the mode filtering is that the
smoothed frame contains slightly mnore small scale
fluctuations than the median filtered one (see Fig.1
and 2). The reason is that the mode is derived by us-
ing the number of pixels twice as small as the median.
For better smoothing we may derive a mode using
more pixels, e.g. 2/3 of the histogram amount, in-
stead half of it. However. then the result of the mode
filtering becomes close to that of the median filter-
ing. Though, if a very smoothed frame is necessary,
the method of regression smoothing without loss of
resolution (Georgiev, 1996b) or other smoothing tool
may be used additionally.
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Figure 2: Unfolding the shape of nearby dwarf galazy Cas 1 using a window diameter of 25 pizels: left part —
original; middle part — after median smoothing; right part — after mode smoothing.
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