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Abstract.

The current state of the problem of double-barred galaxies investigation is reviewed. The ne-
cessity for application of the panoramic spectroscopy methods to a detailed study of kinematics
of these objects is being proved. The first results of observing double-barred galaxies at the 6m
telescope using the multipupil spectrograph MPFS and the scanning interferometer Fabry-Perot

are described.
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1. Introduction

According to the latest statistical estimates (Selwood
& Wilkinson, 1993; Knapen, 1999; Knapen et al.,
2000b; Laine et al., 2001), galaxies with central bars
account for 50-70% of the total number of nearby disk
galaxies. Since the distribution of the gravitational
potential in the region of the bar is not axisymmet-
ric (one generally says of a triaxial potential), then
the motion of stars and gas clouds is different from
circular. This fact is confirmed by both direct obser-
vations of gas velocity fields in barred galaxies (see,
for instance, Afanasiev & Shapovalova, 1981; Duval
& Monnet, 1985; Knapen et al., 2000a) and numer-
ous model calculations, (see, for example Athanas-
soula, 1992; Combes, 1994; Lindblad, 1996; Vauterin
& Dejonghe, 1997). By now it can be considered to be
proved that the bars are dynamically decoupled sub-
systems, where the motions of gas and stars being of
different kind. Inside the bar there exist several “fam-
ilies” of stable periodic orbits that form an off-beat
“backborn” of the bar (Contopouls & Grosbol, 1989).
The main orbits that maintain the shape of the bar
are elongated parallel to the bar and belong to family
x1. If two Inner Lindblad Resonances (hereafter ILR)
are present in the galaxy then stable orbits of family
zo are present between them, which are perpendicu-
lar to the main bar. The location of the resonances
is defined by the relationship between angular veloc-
ity of differential rotation of the galaxy and angular

1 Based on observations collected with the 6m telescope of
the Special Astrophysical Observatory (SAO) of the Russian
Academy of Sciences (RAS), operated under the financial sup-
port of the Science Department of Russia (registration number
01-43
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velocity of the bar rotation.

Such motions are possible only in a collision-free
stellar subsystems. The gas subsystem (where by the
gas particles are implied individual clouds of inter-
stellar gas) is collision. Therefore the stable existence
of intersecting flows is impossible in it. Gas clouds
follow “smoother” paths. The flows of gas onto a rel-
atively slow rotating bar, which occurs at a velocity
of 50-100 km/s, leads to formation of strong shock
fronts at the leading edges of the bar (Athanassoula,
1992).

Numerous model calculations show that the bar
takes up effectively angular moment from the gas of
the disk, which results in formation of gas streams
towards the galaxy centre. Although a detailed hy-
drodynamic modelling (Levy et al., 1996) shows that
apart from the flows towards the centre (inflows)
there exists a reverse motion (outflow) caused by the
saddle point of the gravitational potential. However,
it should be noted that the bar promotes increasing
of gas concentration in the circumnuclear region. This
is confirmed by the real observations. Sakamoto et al.
(1999) showed that the molecular gas concentration
inside the central kiloparsec in barred galaxies is by
an order of magnitude higher than that in galaxies
without bars. The bar is often treated as one of the
basic mechanisms of transport of the interstellar gas
to the circumnuclear region where it becomes a fuel
for an active nucleus or a circumnuclear burst of star
formation.

In the relation between the bar and the phe-
nomenon of active (Seyfert) nucleus, two points
should be noted. Firstly, according to the latest es-
timates of Knappen et al. (2000b), the relative pro-
portion of bars in Seyfert galaxies is negligibly larger
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than one in galaxies of the control sample (80%+8%
and 60%=+9%, respectively). Also Laine et al. (2001)
provide more contrast values of the bar percentage
(73%+£6% for Sy and 50%+7% for non-Sy galaxies).
Knappen et al. and Laine et al. performed measure-
ments using the data of surface photometry in the
near IR range where the influence of dust is negligi-
ble, and the contribution of the old stellar population
into luminosity is significant, which facilitates a more
reliable detection of bars as compared to optical ob-
servations.

Secondly, the bar transports gas not to the centre,
but to the ILR region where the gas is concentrated
in a ring of radius of a few hundred parsec. Thus,
there is a problem of taking up the angular rotation
moment from the gas situated at a distance of 100—
1000 pc from the centre and transportation of it to the
region of effective gravitational forces of the central
supermassive black hole (at a distance of < 1 — 10
pc). In particular detail, this problem is discussed in
the survey “Fueling the AGN” (Combes, 2000)

2. Double-barred galaxies
2.1. The historical review

One of the refined performances of the task of mat-
ter transfer to the active nucleus was suggested by
Shlosman et al. (1989). They showed that in the gas
disk (ring) of radius of a few hundred pc (which is
formed inside a large-scale bar), a new bar can be
formed under the action of a bar-forming instability.
And this bar again forms flows of gas towards the
nucleus. The characteristic scale on which gas is con-
centrated is less than 0.1 Ry, where Ry, is the bar
radius. For this reason, the system of two bars is ca-
pable of “sweeping” the interstellar medium on scales
of a few kiloparsec and concentrate it at distances of
1-10 pc from the centre. The process of angular mo-
ment transfer will further be defined by the turbulent
viscosity of the accretion disk formed around the cen-
tral supermassive object.

At nearly the same time with the paper by Shlos-
man et al. (1989), in which it was spoken only of
a purely gaseous inner bar, Pfenninger & Norman
(1990), using a numerical modeling, demonstrated the
formation of the second bar as a result of development
of instability in the stellar self-gravitating disk. Of
particular interest is the conclusion that the internal
bar does not necessarily rotate at the same angular
velocity as the outer one does. The most stable is the
configuration in which the corotation radius of the in-
ner bar coincides with the position of the ILR of the
main bar. Such an elaborate numerical modeling of
the stellar-gaseous disks was carried out by Friedli &
Martinet (1993), in which a double bar was treated
as one of the stages of evolution of barred galaxies.

In 2001 year new hydrodynamical simulations of the
gas behaviour in double bars are presented by Heller
et al.(2001), Maciejewski et al. (2001) and Shlosman
& Heller (2001).

And what do the observations show? As early as
in 1975, de Vaucouleurs found that an inner (stel-
lar) circumnuclear bar (turned by 30° with respect
to the outer one) was sharply decoupled on the opti-
cal images of NGC 1291 (de Vaucouleurs, 1975). The
same galaxy was investigated by Jarvis et al. (1988)
and they gave one more example of a double-barred
galaxy, NGC 1543. However, the first attempt of sys-
tematic observational studies of this phenomenon was
made by Buta & Crocker (1993) who published a list
of 13 galaxies with “inner circumnuclear bars”.

The observed position angle between the inner
and outer bars in these galaxies varies over a wide
range, from 20° to 90°. Since more than half of galax-
ies have a small inclination with respect to the line
of sight, i < 30°, then a projection must have a mi-
nor effect on the estimate of the real angle between
the bars in the galaxy plane. Therefore, in the opin-
ion of Buta & Crocker (1993), the second bar can
be oriented arbitrarily relative to the outer one. This
question will be discussed in more detail in the next
Section 2.2.

Wozniak et al. (1995) suggested a method of
searching and classification of double bars, which is
based on the isophote analysis of galactic images.
By the turn of the position angle (PA) and by the
change of ellipticity of the inner isophotes, the galax-
ies were divided into one-bar objects, double-bar ones,
and containing a bar with a triaxial bulge. The lat-
ter term was applied to galaxies that demonstrate a
smooth variation of the PA in contrast to a “pure”
bar where the PA = const. By applying this tech-
nique to the optical CCD images of 36 barred galax-
ies, Wozniak et al. (1995) found an “inner triaxial
structure” in 2/3 of the cases, i.e. a second bar or a
triaxial bulge. The galaxies of their sample (Friedli et
al., 1996) are observed in the near IR range. Double
bars were confirmed in all (excluding two, NGC 6951
and NGC7479) objects. Similar observations made
over the last few years in the IR range (where the
influence of dust and young stars is small as com-
pared with the optical range) have extended substan-
tially the list of galaxies suspected to have double
bars (Jungwiert et al., 1997; Greusard et al., 2000).
An image of the double-bar galaxy NGC 2950 we have
obtained with the 6m telescope is displayed in Fig. 1
for example.

Table 1 gives the list of all similar objects that we
have found in references. The first column lists the
name of the galaxy; the second column indicates the
morphological type from the catalogue RC3; as and
ap are the sizes of the semiaxes of the inner and
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Table 1: A list of double-barred galazies

Name Type as a, AGN References Notes

ESO 437-67 SBab 32 (15) ?
ESO 508-78 SBa
ESO 215-31 SBb
ESO 320-30 SABa
ESO 443-17 SBO/a
Mrk 573 SABO

w

—

O ~JCtoo WUt Oto

47
37
15
20 Sy?2

(7

(1

(1

(1

(1
Mrk 1066  SBO 16 Sy2 (1)
NGC 470  SAb 32 (12), (24) B+T
NGC 613  SBbc 59 Sy (15)
NGC 1079 SABa 17 32 (15) T+B
NGC 1097  SBb 10 80 Syl (7),(11),(12),(20),(24)  B+T
NGC 1291  SBO/a (7), (14), (23)
NGC 1300  SBbc (4) T+B
NGC 1317  SABO/a 11 50 (17), (22)
NGC 1326 SBO/a 10 50 LINER (7), (24)
NGC 1353 SAbc 4 14 LINER (15) ?
NGC 1365  SBb 8 150  Syl.8 (4),(15) T+ B
NGC 1371 SABa 10 60 (24)
NGC 1398 SBab 14 36 Sy (15) T+B
NGC 1433  SBab 5 100 Sy2  (4),(5),(15),(24)
NGC 1512 SBab 6 150 (15) T+ B
NGC 1543 SBO (7),(14)
NGC 1566  SABbc Syl (4) T+ B
NGC 1672  SBbc Sy2  (4) T+B
NGC 1808  SABb 37 Sy2 (15)
NGC 2217 SBO/a 8 37 (4), (15)
NGC 2273  SBa 8 24 Sy2  (2), (17)
NGC 2442  SABbc (4) T+ B
NGC 2681 SABO/a 5 29 LINER (9), (24) 33
NGC 2859  SBO 12 46 (8),(24)
NGC 28380  SBO (8) ?
NGC 2935 SABb 11 25 (15) T + B?
NGC 2950  SBO 6 38 (12),(24)
NGC 3081 SABO/a 10 37 Sy2  (3),(6),(7),(12),(17),(24)
NGC 3185  SBa 2 30 Sy2 (1), (8) ?
NGC 3275  SBa 5 34 (17)
NGC 3358  SABab (7)
NGC 3368 SABab 4 24 LINER (15) 3B
NGC 3393  SBab 2 13 Sy2  (3), (13), (15)
NGC 3412 SBO (8) ?
NGC 3516  SBO 6 22 Syl (16)
NGC 3786  SABa 7 25  Syl8 (1)
NGC 3941  SBO Sy2  (8) ?
NGC 3945  SBO 20 42 LINER (9),(24) 3B
NGC 4262  SBO 10 14 (21)
NGC 4274 SBab 10 39 (21)
NGC 4314  SBa 6 75 LINER (8),(21)
NGC 4321  SABbc 10 66 (18), (21)
NGC 4340  SBO 5 52 (12), (24)
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Table 1: A list of double-barred galazies (continued)

Name Type as ap AGN References Notes
NGC 4371 SBO 24 43 (21), (24) 3B
NGC 4593 SBb 2 60 Syl (24) B+T
NGC 4594 SAa 10 68 LINER (10)

NGC 4643 SBO/a 17 51 LINER (8),(21)

NGC 4736 SAab 10 26 LINER (20)

NGC 4754 SBO 7 21 (21)

NGC 4984 SABO 4 30 (15)

NGC 5101 SBO/a 2 50 LINER (15)

NGC 5365 SBO 18 33 (17)

NGC 5566 SBab 6 24 LINER (15)

NGC 5728 SABa 4 44 Sy2  (7),(20),(24)

NGC 5850 SBb 9 &4 (7),(24)

NGC 5905 SBb 6 37 (12), (24)

NGC 6300 SBb 4 44 Sy2 (17) ?
NGC 6782 SBO/a 3 26 (7),(12),(15),(24)

NGC 6951 SABbc 5 44 Sy2  (12), (17) ?
NGC 7007 SAO 4 9 (17)

NGC 7098 SABa 14 57 (12), (7), (24)

NGC 7187 SABO 9 28 (24) 3B
NGC 7479 SBc ? 46 LINER (4), (12) ?
NGC 7702 SA0 0 7 (24) T+B
NGC 7743 SBO 10 57 Sy2  (24) B+T

Table 2: References to Table 1
(1) VRI Afanasiev et al. (1998a)
(2) VRI Afanasiev et al. (1998b)
(3) JHKL' Alongso-Herrero et al. (1998)
(4) plates Baumgart & Peterson (1986)
(5) plates Buta (1986)
6) I Buta (1990)
(7) BVI Buta & Crocker (1993)
(8) BR Erwin & Sparke (1998)
(9) HST Erwin & Sparke (1999)
(10) — Emsellem & Ferruit (2000)
(11) K Forbes et al. (1992)
(12) JHK Friedli et al. (1996)
(13) JK' Greusard et al. (2000)
(14) gr Jarvis et al. (1988)
(15) JHK Jungwiert et al. (1997)
(16) V Moiseev et al. (2000)
(17) K Mulchaey et al. (1997)
(18) I Pierce (1986)
(19) HST Pogge & De Robertis (1995)
(20) JHK Shaw et al. (1993)
(21) JHK Shaw et al. (1995)
(22) plates Schweizer (1980)
(23) plates de Vaucouleurs (1975)
(24) BVRLH, Wozniak et al. (1995)

outer bar in arcseconds, respectively? (if these da-
ta were given by the authors). In the next columns
are shown the type of nucleus activity (from the NED
database) and the references. The symbol 7 in the last
column marks the uncertain data. B + T' denote the
combination of the triaxial bar and the bulge; 3B
is the “triple bar”. In Table 2 is presented the list of
literature sources with indication of the observational
method (photographic, CCD or IR photometry in the
bands). The case of NGC 4594 is distinguished.

This is a known nearby edge-on galaxy “Som-
brero” in which Emsellem & Ferruit (2000) found as
many as two bars on the basis of 2D spectroscopy
with the integral field spectrograph TIGER.

Attention is attracted by the fact that 30% of
all the galaxies in Table 1 are Seyfert, and 15% of
LINER-type galaxies. However, such a number of ac-
tive objects (an order of magnitude larger!) relative
to the field galaxies is most likely caused by strong
selection effects. Really, in the paper by Mulchaey &
Regan (1997) no noticeable discrepancy in the rela-
tive number of double bars in the samples of Seyfert
and normal (non-active) galaxies has been found; see
also the discussion in Friedli (1999) and in Laine et
al. (2001). The influence of selection effects can also
explain the relatively large percentage (56%) of early-
type (S0-Sa) galaxies because the second bar in such

1]

2 Hereafter indices “p” and “s” mark values which relate to
the primary and secondary bars, respectively
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galaxies can be easier defined. So, Erwin & Sparke
(1998) argue that in no less than 20% of SO-Sa barred
galaxies the second bar is observed as well.

Let us make some remarks concerning the terms
used. Double-barred galaxies are termed also “bar-
within-bar” systems. The outer bar is called “pri-
mary” while the inner one is named “secondary”.

2.2. Relative orientation of bars

In the above mentioned paper Friedli & Martinet
(1993) showed that if the two bars have the same an-
gular velocity (2, = €2;), only two stable configura-
tions are then possible — the bars are parallel or per-
pendicular to one another. The former case is a trivial
variation of radial distribution of surface brightness
along the bar axis. The case of the perpendicular bars
is more intriguing, however, it is difficult to confirm
by observations, because only the position angle be-
tween the projections of the bars in the sky plane
can actually be measured, and one has to introduce
a correction for the inclination of the galaxy plane to
the line of sight (7). The task is not trivial because
the point in question is obviously the projection of
three-dimensional structures. It is not always possi-
ble to unambiguously determine ¢ from the ellipticity
of the outer isophotes, because in the outer parts of
barred galaxies rings are often observed, elliptical in
the galaxy plane. Sometimes, the model of the mu-
tually perpendicular bars describes well the observed
surface brightness distribution (see, for instance, the
paper of Moiseev (1998) about the 2D-decomposition
of Mrk573). However, in most of the galaxies ob-
served nearly face-on, the angle between the bars dif-
fers substantially from 90° (Buta & Crocker, 1993).
In the papers by Friedli & Martinet (1993), Friedli
et al. (1996), Jungwiert et al. (1997), which were al-
ready discussed above, attempts were made to take
account of the effect of projection of the bars onto
the sky plane and, first of all, to test the hypothesis
of mutually perpendicular bars. And all these authors
came to the conclusion that there is no distinct char-
acteristic value of the angle between the bars.

In the existing models this refers to the case of a
dynamically independent inner bar. It is usually be-
lieved that from general considerations Qs > Q, (but
Heller et al. (2001) studied the secondary gaseous bar
with Q, < Q).

Since the stellar component in galaxies is collision-
less, then this situation (a bar rotates inside a bar) is
possible and is even reproduced in numerical exper-
iments of Friedli & Martinet (1993). Maciejewski &
Sparke (2000) showed that in a system of two dynam-
ically independent bars, rotating one inside the other,
there exist several families of orbital loops maintain-
ing this configuration (similar to orbits z; and x» in
a galaxy with a single bar). In accordance with the

opinion of these and other authors, a configuration,
in which the relation between angular velocities is not
arbitrarily but such that the corotation radius of the
inner bar lies near the resonance IRL of the outer
bar, is stable (Pfenninger & Norman, 1990; Friedli &
Martinet, 1993; Maciejewski & Sparke, 2000). If the
rotation curve of the galaxy is such that there is no
ILR in the primary bar, then, according to Maciejew-
ski & Sparke (2000), the secondary stellar bar cannot
to exist.

3. Two-dimensional
double bars

3.1. Necessity of 2D-methods

spectroscopy of

The numerous observational papers (see Table 2)
point to the fact that in the case of double bars we are
probably faced with some new structural feature of
barred galaxies. However, all the papers enumerated
above have a significant disadvantage, the presence
of the secondary bar can be found only from photo-
metric data, if on the galaxy image, some extended
structure is observed inside the primary bar. The for-
mal application of the results of isophote analysis, as
described by Wozniak et al. (1995), allows even “triple
bars” to be decoupled (Erwin & Sparke, 1998; 1999;
Jungwiert et al., 1997; Friedli et al., 1996) without
any reasoning for possible dynamic behaviour of such
configurations. At the same time, the observed pho-
tometric structure can, in our opinion, be explained
in a less exotic manner, without involvement of the
secondary and the third bar. It is difficult to separate
the following possibilities using only the data of the
surface photometry:

e The dynamically independent secondary bar
(0 # Q).

e The xo-orbits (perpendicular to the primary
bar) between two inner ILR resonances of the primary
bar. In contrast to the previous case, this structure is
not dynamically independent.

e The elliptical ring in the disk plane at the
ILR resonance of the primary bar. A good exam-
ple is the galaxy NGC 6951, the HST observations
of which showed that the “secondary bar” is a ring
resolved into separate star formation regions (Barth
et al., 1995).

e The polar disk (ring) inside the primary bar.
Similar structures have been found in a number of or-
dinary galaxies (Sil’chenko, 2001) such as NGC 2841
(Afanasiev & Sil’chenko, 1999), NGC 7280 (Afanasiev
& Sil’chenko, 2000), and others.

e The projection of the central part of an oblate
bulge inside the primary bar onto the sky plane. An
illusion can be created of a “second bar”, the major
axis of which is virtually coincident with the line of
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Figure 1: The NGC 2950 image obtained with the BTA focal reducer SCORPIO in the medium-band filter
centered on A = 7550A. The region of the secondary bar observed with the multipupil spectrograph (Fig. 2) is

marked with the box.

nodes of the disk.

e The complex distribution of dust and star for-
mation regions inside the primary bar impedes the
study of the circumnuclear region and can create il-
lusion of the presence of a second bar. This problem
is solved partly by observations in the near IR range.

That the interpretation of photometric observa-
tions of double bars is unambiguous is suggested by
the fact that in the paper by Regan & Mulchaey
(1999), the authors, using the colour distribution
maps obtained with the HST (including those in the
near IR), interpreted the structures observed in a
number of galaxies (Mrk 573, Mrk 1066, NGC 3516)
as circumnuclear spirals but not as second bars.

It seems to us that in order to understand if the
second bar is readily a new dynamically isolated re-
gion of the galaxy, additional observational data on

the kinematics of gas and stars in these strange ob-
jects are needed. Since the motion of matter in the
regions of the bars differs markedly from circular (see
Section 1), and the density distribution is different
from axisymmetric, it is necessary to use the meth-
ods of panoramic 2D spectroscopy which makes it
possible to obtain two-dimensional kinematic charac-
teristics in the sky plane. In 2000 a programme was
started at the 6m telescope with the goal of construc-
tion of radial velocity fields of stars and ionized gas
and two-dimensional maps of velocity dispersion of
stars in double-barred galaxies. These data will allow
first of all the following kinematic features of bars to
be revealed.

e The turn of the kinematic axis (the line of
maximum radial velocity gradient) in the velocity
fields of stars and gas. This is one of the easily mea-
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surable dynamical features of bars. For more details
see the references in Moiseev & Mustsevoi (2000) and
Sil’chenko (2001).

e The difference in the ionized gas radial veloc-
ities measured from Balmer (H,, Hg) and forbidden
([OI11], [NII]) lines, which is associated with the pres-
ence of shock fronts at the edges of bars (Afanasiev &
Shapovalova, 1996). We note that new models by Ma-
ciejewski et al.(2001) and Shlosman & Heller (2001)
show that shock fronts may be absent in the sec-
ondary bar, but a observation tests of this fact is need.

e The distinction of the velocity dispersion dis-
tribution from axisymmetrical case (Miller & Smith,
1979; Vauterin & Dejonghe, 1997).

The author knows but a few papers concerned
with a detailed study of kinematics of galaxies in
the secondary bar region. Knapen et al. (2000a) anal-
ysed the velocity fields of ionized and molecular gas
in NGC 4321 and obtained that only one bar exists
in this galaxy contrary to photometric data. In a re-
cent paper by Emsellem et al. (2001), data are pre-
sented on stellar kinematics of several double-barred
galaxies. In three of them (NGC 1097, NGC 1808,
NGC5728) the secondary bar region turns out to
be dynamically decoupled (the circumnuclear radial
velocity peak in the sections obtained with a “long
slit”). However, from the new data NGC 1365 is clas-
sified by the authors as a single bar galaxy with an
inner circumnuclear disk. In a small note of Wozniak
(1999) arguments are adduced that the “counterro-
tation” of stars which is observed in cross-sections
through the circumnuclear region of NGC 5728 may
be due to the influence of the secondary bar. It should,
however, be noted that the peaks on the rotation
curves and the “counterrotation” detected in one-
dimensional sections are inadequate for proving the
dynamic effect of the bar and can be explained by
a number of other causes, such as merging with a
companion or the accretion of intergalactic gas (see
Kuijken et al.(1996) for the discussion of this point).
The two-dimensional distributions of velocities and
velocity dispersions can give more comprehensive in-
formation.

3.2. Observations

From the list given in Table 1 we constructed a sam-
ple of objects to be observed with 6m telescope BTA,
basing on the following criteria: 6 > 0°, a; < 10" (the
secondary bar is placed in the field of view of the
multipupil spectrograph). During the year 2000 we
observed 14 objects, which makes half of all double-
barred galaxies in the northern sky. The circumnu-
clear regions were investigated with the multipupil
spectrograph MPFS. The field of view was 16" x 15",
the spatial scale was 1" /lens. The spectral range

AA4900 — 6100A included absorption features (Mgl,
Nal, Cal, Fel) characteristic of the old (G-K) stellar
population. To construct the maps of radial velocities
and velocity dispersion of stars (further o), the cross-
correlation method of the spectra of galaxies with the
spectra of template stars was used. We adopted the
method for working with the 2D spectroscopy data
(Moiseev, 2001). With a dispersion of the spectro-
graph of 1.35 A/ px the radial velocity measurement
accuracy was about 5-10km/s, the radial velocity dis-
persion one was 10-20 km/s for o, > 50 — 70 km/s.
The emission lines HB and [OIII] which we employed
to construct velocity fields of ionized gas in the cir-
cumnuclear region are located within the spectral in-
terval. Unfortunately, because most of the galaxies
belong to old types (S0-Sa), the emission is far from
being present in all the objects.

Galaxies with bright enough emission lines were
observed with the scanning Fabry-Perot interferom-
eter (FPI) in the 235th order (for the wavelength
6563 A), the spectral resolution was about 120 km/s.
Interference filter 10-15A wide separated the re-
quired spectral interval around the lines H, or [NTI].
From the observational data the velocity fields of ion-
ized gas were constructed on considerably larger spa-
tial scales than with the MPFS because the field of
view of the FPI was about 5’. The primary observa-
tional reduction and the wavelength scale calibration
were performed with the software developed by the
author in the IDL environment. The velocity fields
were constructed with the ADHOC package 3.

The mean rotation curves and the radial relation-
ships of the position angle PA (r) of the kinematic ax-
is were defined from the velocity fields by the “tilted
ring” method (Begeman, 1989). The velocity fields
were broken up into elliptical rings of fixed width.
The rotation velocity and PA values were determined
in each ring as an approximation of circular rotation.
Even the application of such a simple approximation
allows one to draw a number of conclusions as to the
character of non-circular motions in the bar region
(see Moiseev & Mustsevoi, 2000 for discussion).

3.3. Some results

We will briefly describe the first results from the anal-
ysis of 2D spectroscopy data on the internal kinemat-
ics of the objects under study. One of the spectacular
examples is NGC 2950, an SO galaxy, on the images
of which is clearly defined the secondary bar turned
through approximately 60° with respect to the pri-
mary one (Fig. 1 and references in Table 1). The mis-
match between the position angle of the kinematic ax-

3 ADHOC software has been written by J. BOULESTEIX
(Observatoire de Marseille). It is free of use http://www-
obs.cnrs-mrs.fr/ADHOC /adhoc.html
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Figure 2: Kinematics of stars in NGC 2950 from the MPFS observations. (top) — the radial velocity field
and the map of the radial velocity dispersion. The cross marks the dynamic centre. The relative orientation
of the bars in the image plane and the variations of the position angle of the kinematic axis (“moustached”
dots) (bottom). The position angle of the bars and the outer isophotes (the line of nodes) is obtained from the

photometric data of Friedli et al. (1996).

is of the velocity field of stars (PAg;,,) and the location
of the line of nodes (defined from the outer isophotes)
reaches APA = 10— 20° at distances r < 8" from the
centre. The kinematic axis turns in the direction op-
posite with respect to the line of nodes, as compared
to the position angle of the inner isophotes (Fig. 2).
It is precisely this behaviour that is characteristic for
the triaxial potential of the bar (Monnet et al., 1992;
Moiseev & Mustsevoi, 2000). It can be seen from Fig.
2 that outside the secondary bar the kinematic axis
intersects the line of nodes, and further at » > 10" its
position angle keeps decreasing, which is associated
now with the influence of the primary bar.

Thus, the secondary bar, which is seen on the im-
ages of NGC 2950, shows itself in the velocity field
as well. It is interesting, however, though a central
ellipsoidal structure of r ~ 5" in size is seen on the
velocity dispersion map (Fig. 2), but its major ax-
is coincides with the outer (not with the inner) bar.
Note that in a galaxy consisting only of a disk and
a bulge, the radial velocity dispersion of stars must
be symmetric along the radius, i.e. the map o, has
the pattern of concentric ellipses whose major axis is
coincident with the line of nodes of the disk. In the
presence of a bar, as it is shown in the papers dealing

with numerical modeling (Miller & Smith, 1979; Vau-
terin & Dejonghe, 1997), the distribution of spatial
components of the radial velocity dispersion changes
so that the character of symmetry on the map of the
radial velocity dispersion changes also. The distribu-
tion of o, in the region of the bar will be symmetric

about the bar axis but not about the line of nodes of
the disk.

However, the observed radial velocity dispersion
distributions of stars in the galaxies explored are con-
siderably more diversified (see Fig. 3). Apart from the
expected elliptical structures (NGC 470, NGC 2950,
NGC 2681) also peaks of o, are observed, which are
displaced by a few arcseconds with respect to the dy-
namic centre (NGC 3368). These peaks have a more
complex shape (NGC 5905). Two symmetric peaks
are seen in the Seyfert galaxy NGC 3786 at a dis-
tance of 3 — 5" from the centre. The velocity disper-
sion gradient here is about ~ 50 km/s. Unfortunately,
in literature there are absent any systematic observa-
tional data on the two-dimensional distributions of
the velocity dispersions in the bars. All the papers
are generally restricted to one or two long-slit cross-
sections. The most consistent approach to observa-
tional studies of asymmetry of the distribution of the
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radial velocity dispersion in the bars is presented in
the paper by Kormendy (1983) by the example of
NGC936. Emsellem et al. (2001) have found “central
drops” in the radial distributions of the radial velocity
dispersion in several double-barred galaxies, but they
did not explain them. Note, that if we had studied
the stellar kinematics in NGC 3786 with a long-slit
spectrograph, we should have discovered the “drops”
in the o, distribution similar to those described by
Emsellem et al. (2001).

Analysis of the velocity fields of gas and stars has
shown that in all the galaxies the value of the PAg;,
in the circumnuclear region is different from the po-
sition of the line of nodes by 10° — 25°, which is sug-
gestive of considerable non-circular motions. But only
in a few galaxies (NGC 2950, NGC 3368 and less re-

Velocity Dispersion

-10 -5 0 5
AX, (arcsec)

Velocity Dispersion

AX, (arcsec)

Velocity Dispersion

AX, (arcsec)

Figure 3: Radial velocity fields of stars (left) and maps of velocity dispersion of stars (right) in the galaxies
NGC 2681, NGC 3780 and NGC 5905. The scale in km/s. The solid black lines show the orientation of the
outer bar and the white lines show that of the inner one (from photometry data, see Table. 2).

liably in NGC 5850) the PAj;, changes on the scales
of the secondary bar, and these changes being in op-
posite direction with respect to the PA of the inner
isophotes. This may point to the dynamic decoupling
of the inner bar. The turn of the PAy;, in the rest of
the objects is likely to be related to the influence of
the outer bar.

In the circumnuclear regions of NGC 3368,
NGC 3768 and NGC 5905 the position of the kine-
matic axis of the PAy;, (stars), which is determined
from the velocity field of stars, differs systematically
by 10°—20° from the PAy;, (gas) defined from the ve-
locity fields of ionized gas. This feature is not related
directly to the secondary bar but is the reflection of
the fact that gas and stars move in the bar in differ-
ent manner (see Section 1). The case of NGC 3368 is
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Figure 4: Comparison of the kinematic axis orienta-
tion determined from the velocity field of stars (filled
circles) and from the lines of ionized gas H, (squares)
and [NII] (circles) in the galaxy NGC 3368.

of interest. Here the radial relationship of the PAg;,
(stars) at r = 2 — 15" copies the behaviour of the
PAjin (gas), but it displaced systematically with ref-
erence to the latter by ~ 15° (the measurement accu-
racy of the position angle being close to 1° everywhere
(see Fig. 4). Note that, using the results of numerical
modeling, Shaw et al. (1993) predicted a similar effect
(“phase shift between gas and stars”), which must be
observed in the central regions of the barred galaxies
between two ILR resonances.

4. Conclusions

Thus we made the first attempt to study the internal
kinematics of double-barred galaxies. In the central
regions of all the investigated galaxies deviations from
the purely circular rotation are being detected (turn
of the kinematic axis in the velocity fields, different
for stars and ionized gas, i.e. asymmetry in the ob-
served distribution of the radial velocity dispersion of
stars). However, the region of the inner bar seems to
be dynamically decoupled from the outer bar but in
a few cases (NGC 2950, NGC 3368, NGC 5850). It is
not improbable that this is related to the fact that the
dynamically independent secondary bar is a consider-
ably rarer phenomenon than it follows from the analy-
sis of images of galaxies. This conclusion is consistent
with some theoretical models (Friedli & Martinet,
1993); Khoperskov et al., 2001) which suggest that
the secondary bar is a relatively short-lived structure
inside the long-lived large-scale bar. Moreover, Khop-
erskov et al. (2001) show that the three components
of the velocity dispersion of stars in a galaxy with
a bar have different shape of the distribution in the
disk plane. The radial velocity dispersion o, will have
then a rather complex distribution in the sky plane.
The shape of distribution o is first of all defined by
the parameters of orientation of the bar and the disk
relative to the observer. Changing these parameters,
one can obtain the distribution o, with a drop at the
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centre (like in NGC 3786) or elongated perpendicu-
larly to the inner bar, like in NGC 2950. We consider
the dynamical three-dimensional modeling of partic-
ular galaxies with the use of all the kinematic data
that we have acquired and with the involvement of
the available photometric data to be the next step in
the study of double bars. This is contemplated to be
done in the next papers.
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