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Abstract,

Using the apparatus of correlation Gamma-function (“conditional density”), we have analyzed
spatial clustering of objects from several different samples of galaxies, clusters and superclusters.
On small scales the distribution of objects obeys a power law drop of density with a power index of
0.9-1.5. On a scale of ~ 30 Mpc for independent samples of bright galaxies and clusters of galaxies
we have detected a pronounced break in the slope of the Gamma-function with a power index
decreasing to ~ 0.3. The clustering is much less pronounced in the region from 40 to 100 Mpc,
and there is reason to suppose that the distribution of objects changes to homogeneous on scales
larger than 100 Mpc. This is indicated by the slope of the Gamma-function close to 0 for a sample

of rich clusters of galaxies up to 250 Mpc.

The slope of the Gamma-function prior to the break, which characterizes the degree of clustering
of matter, changes essentially and in a complex manner when passing to brighter (massive) ob-
jects. This suggests that the large-scale structure of the visible Universe even on small scales is
considerably more complex than the fractal distribution described by one dimension (monofrac-

tal).
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L. Introduction

»f the principles on which standard cosmologi-
models are based is homogeneity of distribution of
ter on large scales (Peebles, 1983). A direct indi-
n of such a character of distribution of matter in
nserved Universe is, for instance, the homogene-
:nd anisotropy of CMB radiation. At the same
the investigators of the large-scale structure
iiscovered inhomogeneities in the distribution
sible matter on scales to 100 Mpc (IAU Symp.,
7% Geller & Huchra, 1989). Within the frames of
present-day knowledge there are two main large-
structure models: a homogeneous model with
nations of density of finite amplitudes and a frac-
iel characterized by self-similarity of structures
bserved Universe in a certain interval of scales.
:estion on scales of extension of fractal struc-
s is being debated. According to Davis (1997),
imilarity properties of distribution of galax-
nifest themselves but to 10 Mpc. Pietronero et

7) advocated the idea that a maximum scale of
ring cannot be reached by the present-day sur-

cosmology: observations — galaxies: formation — galaxies: statistics

veys of galaxies and clusters of galaxies, the fractal
properties in the distribution of matter are observed
to ~ 150 Mpc and there are signs of extension of the
fractal structure to ~ 1000 Mpc.

There are several key stages in the history of origin
and development of knowledge of fractal (self-similar)
type of distribution of matter. Having noticed the se-
quence of clustering (galaxies, groups, clusters, su-
perclusters), de Vaucouleurs (1970) provided an ob-
servational substantiation of the model of hierarchi-
cal clustering which could explain the power, with a
slope v ~ 1.7, decreasing of density with increasing
radius (de Vaucouleurs diagram). By 1982 Mandel-
brot (1977, 1982) had extended these ideas and in-
troduced a mathematically rigorous notion of fractals
and proposed, following from general considerations,
a fractal dimension D = 1 for the Universe.

About 20-year work over the redshift surveys, in-
creasingly deeper and complete, made it possible to
see in the distribution of galaxies the structures and
voids of different shape (Huchra et al., 1983), the fill-
ing of the volume by objects with measured z still
more clearly defined the features noticed previously
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(Fairall, 1998). The maps of the distribution of galax-
ies in space of redshifts (CfA1l survey (Huchra et al.,
1983), the first deep two-dimensional (slice) CfA2 sur-
vey (Geller & Huchra, 1689) and others) were consis-
tent with intuitive ideas of stochastic fractal point dis-
tributions in three-dimensional space: extended “co-
herent regions” of increased density, voids occupying
a considerable part of the volume, general “clumpy”
and irregular pattern of distribution.

The more detailed construction of the three-
dimensional pattern of the nearest regions of the Uni-
verse gave impetus to development of a variety of sta-
tistical methods (Borgani, 1995; El-Ad et al., 1996;
Paladin & Vulpiani, 1987; Plionis & Valdarnini, 1992)
of isolation and study of different structures in the
distribution of objects in the Universe (such as voids,
filaments, superclusters, “walls”). As distinct from
the two-point correlation function, these methods re-
veal more finely characteristic morphological prop-
erties of the structures. The methods of search for
fractal (scale-invariant) properties of matter distri-
bution were executed mathematically (Borgani, 1995;
Pietronero, 1987; Coleman & Pietronero, 1992).

2. Mathematical apparatus

If the mean density in the volume under study is
not determined, i.e. it varies considerably with in-
creasing working volume up to scales characteriz-
ing the volume under study, the standard statistical
method of analysis of the large-scale structure, the
two-point correlation function (&-function) (Peebles,
1983; Davis & Peebles, 1983; Boerner & Mo, 1990;
Klypin & Kopylov, 1983; Dalton et al., 1992) will
then yield a result dependent on the parameters of
the sample and the way of calculation. For instance,
it has been noted that the “correlation scale” ry grows
with increasing volume of the sample (Einasto et al.,
1986; Coleman & Pietronero, 1992).

Pietronero et al. (1988) and Coleman &
Pietronero (1992) noticed that if the given sample
does not include the scales where the amplitude of
clustering is small, i.e. the distribution is homoge-
neous (the scatter of the number of galaxies in distant
equal volumes is described by the Poissonian statis-
tics), then the parameters of the &-function do not
show the real amplitude and the limiting scale of clus-
tering, and proposed another method of calculation
of the correlation function of density, the so-called
Gamma-function (hereafter Gamma) or the “condi-
tional density” (Coleman & Pietronero, 1992) used in
statistical physics for analysis of non-analytical struc-
tures with large-scale density correlations. Pietronero
and his co-workers (Pietronero et al., 1997; Sylos
Labini et al., 1996, 1997; Montuori et al., 1997; Sy-
los Labini et al., 1998) had been using this method
for over 10 years to study the distribution of astro-

physical objects and concluded that fractal structures
are extended to scales 100-150h~! Mpc, and from
indirect data (relation between “radial” density and
distance from ESP survey) even to ~ 1000h~! Mpc
(Pietronero et al., 1997).

The papers of Pietronero and his colleagues found
a broad response. Cosmological models were proposed
which took account of the fractality (Baryshev, 1981;
Baryshev et al., 1994) as an essential part of the Uni-
verse picture (interpretation of redshift as a gravi-
tation effect which is determined by the global in-
homogeneity of the Universe but not by the expan-
sion of space). Controversy developed as to the scales
of extension of the fractal structure (Davis, 1997;
Pietronero et al., 1997). Nevertheless, among the re-
searchers of the large-scale structure only Pietronero’s
group keeps holding “radical” viewpoints of the enor-
mous extension (up to 1000 Mpc) of the fractal law
of density variation with distance, which is described
by the single dimension D (Mandelbrot, 1977; Feder,
1988).

The fractal methods are difficult to apply to the
study of distribution of galaxies and clusters of galax-
ies because the existing samples represent the distri-
bution of a finite number of points in a finite volume,
whereas the fractal properties in terms of mathemat-
ics are determined at the limit of infinity. For the
“physical” or “dynamical” fractal a large (but finite)
interval of scales between the lower and upper limits
of manifestation of self-similarity properties is neces-
sary ( McCauley, 1997).

The condition “volume limited” should be met in
order that all regions of the sample be represented
with equal rights, that is, from every object one could
“see” any other. For samples of galaxies this condition
is realized when the objects, whose absolute stellar
magnitude is larger than that of the faintest galaxies
at the far limit of the sample, are rejected.

It is important to note that the ideology of con-
struction of the Gamma calls for abandoning a priori
assumptions concerning the properties of the distri-
bution of the sample objects. Thus for the method
to be used, careful preliminary work is required on
the creation of a sample of homogeneously selected
objects with sharply defined spatial boundaries. The
scales to which the Gamma can be calculated are re-
stricted by the radius of a maximum sphere with the
centre in the object of the sample, which can still fall
within the boundaries of the sample.

The Gamma is variation of the mean density of
objects as the volume under study increases. The
differential and integral Gamma-functions are deter-
mined as follows:
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1 N 1 A
*(r)= W Z o / n(r; — r)dr, (2)
i=1 5

N
where n(r) = & Y. 6(r; — ) is the numerical density.
i=1
The integral function (I'*) averages the contribu-
tion of different scales and therefore, with the pres-
ence of properties of a monofractal in the distribution,
it smoothes fluctuations and allows the dimension of
the distribution to be measured with a higher accu-
racy than the differential function. At the same time
the integral function is not very sensitive to change of
:he type of distribution. The differential function, in
orinciple, registers better change of the mode of dis-
wribution than the integral function does, and in this
ense it is more informative, but at the same time it
= more susceptible to fluctuations.
In some cases the form of the Gamma has a sim-
o.e interpretation. For the monofractal with the single

swerage, in the same manner on all scales for all ob-
~ts) the relationship between the number of objects

2 sphere and its radius, N(r) = BrP, is satisfied.
the general case D < 3. For a homogeneous distri-

:tion the number of points in the volume is directly
roportional to the volume (D = 3).
The average density in a sphere of radius R;
siaced in a given fractal structure or, for instance, in a
N(R,) _ 3B p—~(3-D)
V(R,) ~ 4r 'S
2t D < 3 the average density (n) is a diminishing
-tion of radius Rs and (n) —» 0-at Ry — oo is
stisfied for each point regarded as the centre of the
swhere of radius Rs. For the homogeneous distribution
_ = 3) the average density is constant and indepen-
© of the volume it is measured in.

n the case of a “pure” monofractal structure, ['*
st change according to a power law with the slope
the straight line in the plot log(T'™*) — log(r), which
l=fined by the fractal dimension of the set. If the

“actal properties manifest themselves only to a cer-
“ain scale A\g with transition to uniformity on larger
sraies, the relations:

niform  distribution is (n) =

DB
T(r) = =—7r"C=D) r < A,
47
DB __
L(r) = =228 r > 1

47

= satisfied. The Gamma, function is represented here

definition in the form I'(r) = 254X and N(r) =

When analysing the real distribution, it should
sorne in mind that even if the points of the inte-
eal Gamma fall well on a straight line in the region
* crop of the “conditional density”, it does not sug-
= that the properties of the monofractal are present

—log D)

Ay Rs
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Figure 1: Ao is the mazimum scale of extension of
correlations. R is the limiting scale of calculation of
gamma-functions.

in the distribution. Analysis of artificial distributions
shows that the power law Gamma diminishing with
the index —+ is a necessary, but not a sufficient condi-
tion for fractality of the distribution with the dimen-
sion D = 3 — ~. Nevertheless, the power law char-
acter of the Gamma in the interval of scales, where
it is defined with sufficient reliability, admits a frac-
tal interpretation. Other attributes of fractality, for
instance, self-similarity of the structures, the propor-
tion of voids in the volume, require a special study by
suitable methods.

The paper consideres the relations between log(I")
and log(r), log(I'™) and log(r). The angular coefficient
of the approximation line, which is plotted on the cho-
sen region of the log(r) variation, defines the corre-
lation dimension of the distribution (co-dimension).
The greater slope (corresponding to the smaller di-
mension implies, on the average, a stronger decrease
of density inside the volume and therefore a higher
clustering of objects. The horizontal regions of the
plot point, in the general case, to uniformity of dis-
tribution of objects in the sample on corresponding
scales.

Fig. 1 shows the expected behaviour of the
Gamma in transition from fractal clustering on scales
less than Ag to uniform distribution on larger scales.
The figure illustrates the informativeness of using the
Gamma in searching for the scale of change of the
condition of clustering Ag, provided that Ry is well
larger than Ag.

3. The way of calculation

e The boundaries of the region of the highest
completeness are denoted (the zone of incomplete-
ness along the radial axis and the region of strong
interstellar extinction are usually excluded).

e The density of the objects that fall within the
spherical layer ro < r < 19 + A around each object,
that is, the density at a given distance from the object
of the sample for the differential Gamma, and the
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density in spheres of radius ro with the centres in
the objects of the sample for the integral Gamma are
calculated (the centres of the spheres are not included
in the counts, i.e, the density of the “neighbours” is
measured). The calculations are averaged. The results
are presented on a logarithmic scale in the form of the
relations log(T") and log(rg), log(I'™*) and log(ro).

e If a part of some sphere falls outside the sample
limits with increasing working radius rg, the sphere
is then excluded from the calculations. Thus, with
increasing working radius, only the spheres with the
centres progressively nearing to that of the volume
containing the sample are involved in the calculations.
The calculations are terminated when the number of
remaining spheres is Ny, < 10.

The method of calculation implemented in the
present paper differs from the variant used by
Pietronero and his colleagues but in insignificant de-
tails (the step of increasing the working radius, the
number of finite spheres at which the calculations are
terminated and others).

We call this method of Gamma calculation “classi-
cal” as distinct from modifications using various kinds
of weighting of the regions of spheres falling outside
the sample limits (Lemson & Sanders, 1991; Andreani
et al., 1991) and other procedures allowing more ef-
fective utilization of the whole volume of the sample.
The demerit of the method is that the sample ob-
jects are unequal in rights since the objects located
at the boundaries fall out rapidly from the calcula-
tion as the centres of spheres. Therefore the result
on large scales is strongly dependent on the distri-
bution of a small number of objects near the centre
of the volume being studied. From our estimates the
Gamma remains informative at a minimum number,
100-200, (depending on the volume) of objects, left
in the sample. A detailed examination of the question
is presented in Sylos Labini et al. (1996).

The problem of determining the error of approxi-
mation of the Gamma slope in the region, where the
power law decrease of density is observed, is diflicult
to overcome because there is no “etalon” of distri-
bution for the Gamma, as distinct from the statis-
tics which compare in some way the distribution of
a sample with uniform one. The dispersion of the
Gamma, calculations with respect to the mean does
not, strictly speaking, indicate the error of the mean
value of the Gamma since for an arbitrary distribu-
tion, for instance, fractal, the spread in values may be
natural, and only the mean Gamma values are of sig-
nificance. The “bootstrap” method (Ling et al., 1986;
Mo et al., 1992) may possibly give correct estimates
of the errors.

The distances for all samples of galaxies were
taken Euclidean and were determined by the Hub-
ble law R = Vy/Hy, where Vj is the radial velocity,

and Hjy is the Hubble constant. The K-correction was
not taken into account.

When changing the redshift values to metric dis-
tances for the clusters (Abell and APM), the following
formula was used:

_ ¢ qo+ (90— D(V/T+2g2-1)
o= Hy g2 (1+2) ' 3)

The values Hy = 100km/s/Mpc for the Hubble
constant and ¢ = 0.1 for the deceleration parameter
were used in the calculation by this formula.

4. Description of samples and results of
calculations

To analyse the Gamma behaviour, diverse data were
chosen which represented samples of physically iso-
lated structures of luminous matter (galaxies, clus-
ters, superclusters), allowing the clustering on scales
from 50kpc to ~ 200 Mpc to be estimated.

4.1. Local Volume

This is a sample of nearby galaxies with radial ve-
locities less than 500km/s with respect to the Lo-
cal Group centroid. The original list made by Kraan-
Korteweg and Tammann (1979) numbered 179 ob-
jects. Further it was substantially complemented by
Karachentsev (the most complete compilation can be
found in Makarov’s thesis (2000). We will emphasize
that this is the only sample with photometric esti-
mates of distances of galaxies. We used a sample of
330 objects. Of these 330 objects, 193 galaxies have
photometric estimates of distances, for 47 objects the
distances are taken from their membership in known
groups, and only for the rest of the objects Hubble
distances (Ho = 7T0km/s/Mpc) were used.

A supergalactic “disk”, in which 80 % of galaxies
are concentrated, is dominated in the distribution of
the Local Volume galaxies. This is a flat structure
that occupies the centre of the volume and becomes
more dense in the direction toward Virgo. Practically
all known groups of galaxies of the Local Volume (the
Local Group, M81, NGC 5128+NGC 5236 (Centau-
rus), NGC 4244+NGC 4736 (Canes Venatici), M101)
are located in the disk. In the northern direction (in
supergalactic coordinates) the “Local Void” detected
by Tully is situated. It takes approximately half of the
volume in question. From Karachentsev’s estimates
there are no galaxies brighter than Mp = —13™ in
absolute magnitude in this region.

The results of the Gamma-analysis are presented
in Figs. 2 and 3. The slope v ~ 1.2 in the Local Vol-
ume is likely to be defined by the distribution geome-
try. The expected slope for a pancake-type structure
is ¥ ~ 1. The test with the use of random “mixing” of
galaxies in the “disk” does not change essentially the
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Figure 3: The Local Volume Rg = 7.15 Mpc.

w=ult of the Gamma-analysis. That is, strictly speak-
me. the distribution of galaxies in the Local Volume
argely inhomogeneous because of the presence of

= “Local Void”, but not fractality. It is likely that
slope of the Gamma towards small scales remains
wactically up to the size of a large galaxy (~ 50kpc)
to the dwarf companions of the most massive

4.2. CfA2 and SSRS2 catalogues of galaxies

CfA2 (a subsample from the UZC catalogue (Falco
et al., 1999)). The catalogue of Zwicky with mgz, =
15.5™ formed the basis for the redshift survey of the
Center for Astrophysics. Systematical measurements
of redshifts were started in 1978. By the present time,
14632 spectra have been obtained within the frame
of the CfA2 project. As to redshifts, the survey (96 %
completeness with mz, = 15.5™) comprises 13150
galaxies with measured radial velocities. About 30 %
of data were taken by the authors from the literature.
In the regions 20" < a < 4" (south), 8" < a <
17" (north), —2.5° < § < 50° (12925 galaxies) the
catalogue completeness reaches 98 %.

SSRS2 (July, 1998, da Costa et al., 1998). 5369
galaxies to the apparent magnitude 15.5™, which
cover 1.7 sterad of the southern hemisphere, are
picked up from the list of nonstellar objects cata-
logued in HST GSC. The accuracy of determination of
the positions is ~ 1”. The error of photometric mag-
nitudes is 0.3™. The system of magnitudes is homo-
geneous over the sky and corresponds to magnitudes
measured at an isophote level of ~ 26™0". The radial
velocities are accurate to ~ 40 km/s. The survey com-
pleteness in redshifts is 99% to the 15.5™ apparent
magnitude.

Since SSRS2 is in fact the extension of the CfA2
survey to the southern sky, we united in the analysis
the adjacent southern and northern regions of CfA2
and SSRS2 to obtain the following samples:

north: CfA2 (0° < § < 90°, 7" < a < 18", b/ >
15°) + SSRS2 ( 6 < 0°, b1 > 35°),

south: CfA2(—2.5° < 6§ < 50°, 20" < a < 4h, ! <
—15°) + SSRS2( —60° < § < —2.5°, bfT < —40°).

The results of the Gamma-analysis of four sub-
samples for the northern and southern sky are pre-
sented in Figs. 4, 5, 6 and 7. From the independent
northern and southern samples one can see a pro-
nounced break at 20-30 Mpc. The large extent of
the region after the break suggests that the break is
due to the distribution properties, but not the bound-
ary effects. It should be noted that the results of the
Gamma in the northern and southern parts are prac-
tically coincident, though the morphological distinc-
tions (the presence of isolated structures) are different
for all samples.

4.3. APM clusters

The catalogue of APM clusters (Dalton et al., 1992,
1997) is the first sufficiently large catalogue of clus-
ters of galaxies formed with the aid of an automated
procedure of isolation of objects based on the APM
catalogue of galaxies to bj = 20.5™ in the southern
sky region: —72.5° < § < —17.5°, 20.5" < a < 5.6".
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Figure 4: CfA2+SSRS2 north Ry, = 140 Mpc.
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Figure 5: CfA2+SSRS2 north Ry, = 160 Mpc.

The richness of clusters and the characteristic bright-
ness of galaxies were determined together in a circle
of radius 0.75 h~! Mpc, which is twice as small as
the one used by Abell. In the opinion of the authors
of the catalogue this has improved considerably its
homogeneity. A total of 957 clusters with estimates
of z < 0.12 are found in this region (Dalton et al.,
1997). For 374 of them the redshifts are determined
spectroscopically, including 55 clusters with measured
z > 0.12. The completeness of measurements of z for
richer clusters is considerably higher than for poor.
For this reason, we have chosen for the analysis the
APM clusters with the richness R > 54, which cor-
responds approximately to the richness R > 0 (or
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Figure 6: CfA2+SSRS2 south Ry, = 140 Mpc.
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Figure 7: CfA2+SSRS2 south Ry, = 160 Mpc.

Na > 30) for Abell clusters. In total such clusters
number 346. Among them 43 have measured z > 0.12,
and we have not considered them, for 217 z < 0.12,
and for 86 there are available only estimated z (by
definition smaller than 0.12). The completeness of
measurements of redshifts for the subsample from the
APM catalogue is about 72%.

According to the way of compilation, the clusters
have been catalogued with the highest statistical com-
pleteness in a certain middle interval of z. A small
number of nearby clusters might not be included in
the catalogue because of large angular dimensions,
and a considerable number, increasing towards the far
boundary of the volume, of distant clusters because
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¢ the decreasing with distance contrast of the cluster
und errors in the determination of the characteristic
wellzr magnitude of galaxies of the cluster.

As can be seen from Figs.8 and 9, the Gamma
siwowes 2 particularly pronounced break at R~32 Mpc.
The slope v2 & 0.3, i.e. we see a correlation of the dis-

=bution on scales >30Mpc, but the clustering is in-

sizmificant here. The interval from the point of break
wp to the limit of calculation of the Gamma is consid-
le, from 30 Mpc to ~ 100 Mpc. The incomplete-
wes= of the measured z does not affect the location
¢ the break; it is only the slope of I'* that changes
wor to the break point.

4.4. Rich Abell clusters
Cone”

in the “Northern

In this sample are included all Abell’s clusters of
galaxies (Abell et al., 1989) with richness Nq > 70
(N4 = 50 — 79 corresponds to the richness class
R = 1) which are located in the region b'/ > 40°,
for which z < 0.24 either measured or estimated ac-
cording to Leir and van den Bergh (1977). For 247
(77%) out of 321 clusters there are available spectro-
scopically measured z, about 33% measurements of z
were made with the 6 m telescope in the course of the
programme on studying distribution of rich clusters in
the “Northern Cone” (Kopylov et al., 1988; Kopylov,
1999). For such rich clusters (remind that the clusters
with N4 > 80 belong to the classes of richness R > 2)
at high galactic latitudes (b'/ > 40°) the catalogue
of Abell, perhaps, may not be considered as strongly
distorted by the effects of incompleteness which could
influence seriously the shape of the Gamma. At the
present time, this sample of clusters is likely to be the
best one for our purpose both in its completeness and
homogeneity and in coverage of the volume of space.

The subsample of rich clusters that we have ob-
tained allows one to follow the behaviour of the
Gamma, in a very wide and probably in the most in-
teresting range of scales, 10-250 Mpc, in which from
theoretical reasoning and from the available data an
asymptotic transition to the homogeneous distribu-
tion of objects in space must be observed. It is ex-
actly this behaviour of the Gamma that has been de-
tected (see Figs.10 and 11). After the region of power
law drop in density with the slope v &~ 1.5, starting
from ~ 40Mpc, a transitional interval follows with
gradual decrease in slope, and beginning with the ra-
dius > 120 Mpec, the distribution of clusters does not
practically differ from homogeneous up to a limiting
radius of 250 Mpc.

The use of the sample in which only measured z
are present (incomplete sample) does not change es-
sentially the Gamma shape and shows that the result
from the complete (in the sense of location of objects
in the volume) sample is not practically distorted by
the fact that for part of the clusters estimated z have
been taken. The inclusion into the sample of clusters
with estimated z leads only to reduction of the steep-
ness of the slope on small scales, that is, “blurring”
of clustering of clusters on the scales of superclusters
occurs.

4.5. Superclusters of galaxies

The catalogue of superclusters of Einasto et al. (1997)
which covers the region R < 350 Mpc, |b/f| > 17° was
constructed by the method of percolation using Abell
clusters of richness R > 0 both with measured and
estimated redshifts z < 0.12. The percolation radius
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Figure 10: Rich Abell clusters with measured z, N =
247.

IlllllllIII|III|!IIIIX)II|
-3.0 Or

® S

-4.5

log( T, %)

-5.0

5.8

-6.0

lIllI|lIIIlIlllllkllli!llll‘(lllllh
ll[llllllllil[llllllIllllll‘llljj)

\
Lo bv v g by v e b ey Lo ol

0.0 0.5 1.0 1.5 2.0 2.5
log(r)

Figure 11: Rich Abell clusters with measured (247)
and estimated (74) 2z, N = 321.

is 24 Mpc. A total of 220 superclusters were revealed.
Einasto et al. (1997) pointed out that superclusters
are located at the nodes of a quasi-regular lattice.
As distinct from clusters of galaxies, superclusters
represent nonvirialized systems numbering from 2 to
36 (for the richest of all — the Shapley superclus-
ter) Abell clusters. The great difference in popula-
tion and, therefore, in sizes is due to the procedure of
construction of the catalogue. This may, in principle,
introduce unpredictable variations in the correlation
properties of the sample since the superclusters con-
sidered in the calculations as point objects may ac-
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Figure 12: Einasto superclusters, north.
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Figure 13: Einasto supercluster, south.

tually be strongly anisotropic systems, for revealing
of which the method of percolation is just the most
suitable. Nevertheless, the Gamma calculation for the
superclusters of Einasto et al. is of interest as an in-
dependent method of control of clustering of matter
on sufficiently large scales (< 150 Mpc).

In Figs.12 and 13 is displayed the Gamma cal-
culated for the northern and southern subsamples of
superclusters. On scales larger than the percolation
radius, immediately after the appearance of the “sig-
nal”, that is when a sufficient number of objects fall
within the sphere and spherical layers, the Gamma
shows directly homogeneity of distribution of super-
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Table 1: Parameters of various samples
N

Rim My s 7 Bpreak 72
(Mpc) ‘ ~_ (Mpc) (Mpc)
Local volume (Hg = 70)
7.15 -13.0 198 715 1.19 - -
Local “disk” (Ho = 70)
2.0 -13.0 146 2.0 1.44 - &
~CfA2+SSRS2, north (Hy = 100)
180 -20.78 212 69 1.41 24 0.52
160 -20.52 458 69 1.34 20 0.36
140 -20.23 9539 61 1.21 23 0.42
120 -19.90 1691 52 0.98 19 0.46
100 -19.50 2610 43 0.86 16 0.40
CfA2+SSRS2, south (Ho = 100)
180 -20.78 194 64 1.53 25 0.11
160  -20.52 339 o8 1.43 15 0.40
140 -20.23 611 52 1.23 17 0.22
120 -19.90 1056 44 0.97 20 0.19
100 -19.50 1517 39 1.01 19 0.19
APM-clusters, richness R > 54 (Hp = 100) '
1)with measured and evaluated z
339 303 105 1.24 32 0.31
2) only with measured z
339 217 105 1.42 32 0.32
Abell clusters, richness Ng > 70 (Hy = 100)
1) with measured and evaluated z
638 321 246 1.40 ~ 40 ~ 0.3
>120 ~0
2) only with measured z
638 247 246 1.53 ~ 40 ~ 0.3
> 120 ~0
Einasto superclusters, north (b7 > 15°) (Hy = 100)
350 98 164 - (40) 0
Einasto superclusters, south (b'7 < 15°) (Hy = 100)
350 122 173 — (40) 0

tusters of galaxies shows the first break. The sec-
w. a less pronounced break (or a feature on the
mrve of the Gamma variation) on a scale of about
“20 Mpc may likely be associated with transition to
masi-regular distribution of the superclusters on a
with a period of about 125Mpc (Einasto et
1997). Note that evidence to this scale of cluster-
mz in the spatial distribution of rich clusters was also
Srained in measuring the correlation function of rich
smpact clusters in the “Northern Cone” (Kopylov et
1988).

.

. Discussion of results

L

Table 1 are collected the principal results of the
smalvsis. The first four columns present the basic pa-

rameters of the samples of objects. Rj;,, is the far
boundary of the sample along the radial coordinate.
M];p, is the limitation on absolute magnitude for the
“volume limited” sample, which corresponds to Rj;,-
N is the number of objects in the sample. R; is the ra-
dius of the maximum sphere falling inside the bound-
aries of the sample. In the last three columns are
given the parameters of the simplest model that we
have used to describe the Gamma behaviour: “power
law drop” of density (index ;) — break (Ry eak) —
change of the mode of clustering (v2)”.

The results of investigation of all principal sam-
ples are displayed in Fig.14 in order to make more
convenient their comparison with one another and to
attempt to reveal common laws of clustering through-
out the investigated range of scales.

In Fig.14 one can see an approximately “coor-
dinated” break over different samples including the
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Figure 14: A master figure of Gamma functions for different samples. Squares and circles show the behaviour
of the Gamma for samples of the Local Volume and Supergalactic Disk, respectively. The crosses of different
form are for the northern part of the samples CfA2+SSRS2, for the depths 100, 130, 160 Mpc. The triangles
are for APM clusters. The inverted triangles are for Abell clusters. The diamonds designate the Gamma for

Einasto superclusters.

spheres with R > 30 — 40Mpc (the first arrow).
From the galaxies of the northern part of the sam-
ple CfA2+SSRS2 the extension of the region of the
Gamma after the break suggests that the break is
most likely caused not by the boundary effects, but
rather by the properties of distribution. For APM
clusters the Gamma has a break at &~ 30 Mpc, the lim-
iting scale is 105Mpc. The tendency of behaviour of
this type Gamma (break and transition to other mode
of clustering) is terminated by deep samples of rich
clusters and superclusters, nearly complete “leveling
out” of the Gamma (the second and third arrows) is
observed. A trend of slope 7; (prior the break) is no-
ticeable over all samples, the dynamics and causes of
which still remain to be solved. Formally, the power
law of the drop of density begins with scales ~ 50 kpc,

immediately after the size of a huge galaxy.

We used rather heterogeneous data, even though
the results obtained from different samples basically
agree with each other in the main features, which al-
lows some general conclusions to be drawn concerning
the character of behaviour of the Gamma on different
scales.

1. The shape of the correlation Gamma function
points to the density variation according to a power
law.

2. The power index on small scales (prior the
break) changes within 0.9-1.5. In principle, this cor-
responds to fractal distribution, but the scatter in
slopes for different samples of objects of different na-
ture makes questionable the possibility of describing
a large-scale structure by a single fractal dimension.



STUDY OF CLUSTERING OF GALAXIES, CLUSTERS AND SUPERCLUSTERS 49

3. Manifestations of fractality have been revealed
on scales spanning nearly 3 orders of magnitude —
from 50 kpc to 30 Mpc.

4. Systematic variations of the Gamma parame-
sers obtained from CfA2+SSRS2 galaxies require ad-
fitional investigation, although the tendency to “lev-
=iing out” of the Gamma at R > 20 — 25Mpc for
orighter objects is consistent with the results for clus-
iers (brighter galaxies concentrate towards the cen-
ires of clusters).

5. On scales 30-40Mpc, in the cases where the
samma is calculated to scales well larger than
£1Mpc, a break is seen in the behaviour of the
zamma (index v < 0.5) which implies the change

¢ the condition and, possibly, a physical mechanism
¢ clustering.

6. From 30 to 100-120 Mpc the clustering is likely

sceur, since on these scales isolated structures

sreat Wall, voids, etc.) are observed, but it is in-
iznificant, for when increasing the scales, the density
frops slightly. Probably, the contrast (amplitude) of
momogeneities on these scales is already small.

7. An asymptotic transition to homogeneity

» — 0 might be supposed, mainly from the distribu-
n of rich clusters and superclusters on scales 40—
20 Mpc.

As a whole, the correlation Gamma-function is
pite an interesting and informative way of describing
arge-scale structure. It should be noted, however,
the influence of selection effects on the shape of
ue Gamma is still not clearly studied. A study is re-
pered of model samples with expected properties of
w= Gamma and properties introduced by real selec-
= effects (for instance, the density gradient along
= radial coordinate).
The limitation of scales of calculation by spheres
c=ted inside the sample boundaries does not solve
e problems of boundary conditions completely, be-
wise the Gamma becomes dependent on the loca-
= of significant structures inside the sample bound-
we=. This points to the necessity of careful selection
~ ohjects and choice of sample boundaries. The in-
mpleteness of the sample may diminish the statis-
2. significance of the result of Gamma application.
“2er methods should be involved to confirm the in-
Erpretation.
Nevertheless, it can be argued with assurance that
w results of application of the Gamma function are
o fair agreement with theoretical considerations of
‘= Snitness of the range of scales with the fractal
wme of correlation of density and of gradual decrease
“womtrast of inhomogeneities with increasing volume
* ke region of the Universe being studied.
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