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ABSTRACT. A technique for obtaining the phase Fourier spectrum of object
images, based on bispectral analysis of speckle interferograms, is des-
cribed. It is shown that in the case of non-uniform detector sensitivity
over the field the functions necessary for elimination of the photon bias
in the bispectrum differ from the power spectra. An iteration algorithm is
proposed for reconstructing the phase spectrum from the bispectrum that
makes the best use of the redundant bispectrum to increase the signal-to-

noise ratio in the reconstructed Fourier spectrum of an object.

INTRODUCTION

The "phase problem" in classical speckle interferometry (Fienup, 1978) can be
solved if instead of the power spectrum one uses the speckle images function, which,
then averaged over all short-exposure images, preserves information not only on the
lodulus but also on the Fourier spectrum phase of the image. The selected function
wst at high spatial frequencies have a high signal-to-noise ratio, and be easily
calculated. One such function is the bispectrum, the product of three Fourier

spectrum images expressed in different coordinates:

1@, v)=1@IV)I(-0-v), (1)

-

where 1(3) is the Fourier spectrum of the image, and G, v, -u-v are the coordinates
in the Fourier region in which the spectrum is expressed (Nikias and Raguver, 1987).

Bispectral analysis was first used in astronomy to analyse interplanetary glow in
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the metre radio wavelength range. Readhead et al. (1977) showed the analogy of this
technique to the closure phase at frequencies higher than that of the atmosphern
cut-ofi, and that this method is restricted not only to radio frequencies but can b
applied to any system that constructs interference images in sufficiently shot
times. Therefore bispectral analysis may be directly applied to speckle interfen:
grams to measure both the modulus and phase of the diffraction-limited Fourierspmb‘
rum of an object image. The use of bispectrum analysis in speckle interferometry
makes 1t possible to remove telescopic akerrations and atmospheric distortions ax
obtain a direct image with a high, close to diffraction, angular resclution (Lohmam
et al., 1983). In other words bispectral analysis is the solution to the phase prob
lem in speckle interferometry. Although there is no theory universal enough to pr
vide a full idea of the capabilities of bispectral analysis, the methods developed a
its basis show good results when applied to specific problems.

Let us enumerate the basic properties of the bispectrum. As a result of the comm
tative character of multiplication the rearrangement of spectra does not chang
the bispectrum value. Besides this, if the image is real its spectrum is then symmel:
rical about the conjugation, i.e. I(G.)=I*(—a), so the bispectrum is also symmetrical
1(3)(3,6)=1‘3’*(~3,~3). Using these properties, we can readily derive twelve symmet:

ries of the bispectrum:

T (2,v) = (4,v)
T (u,v) => (v,u)
o} (1,v) => (u,-u-v)
T, (u,v) => (7,-0-v)
- (u,v) => (-u-v,v)
T (u,v) => (-u-v,1n)
T ; (1, v) => (-u,-v)
E 3 (u,v) => (-v,-u)
aul (B,v) => (-E,Gw)
T (1,v) => (-v,u+v)
T“: (B,v) => (a+;,~v')
T, (1, v) => (u+v, -u) (2)

Analysis of the symmetries has revealed a number of fundamental properties of th
pispectrum associated with its invariance:
- the bispectrum is invariant with respect to the image displacement;
- the zero-asymmetrical signals can not be recovered from the bispectrum;

- the bispectrum does not change when multiplying the Fourier spectrum of an image by
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any exponential factor exp(f-u), where B is the complex constant.

Also, the bispectral approach to the problem of image reconstruction allows us to:
-gain information related to deviations frem the normality;

-directly estimate the Fourier spectrum phases of an object image;
-reveal non-linear mechanisms to form an image.

Finally, bispectral analysis is low-sensitive to the additive noise, while the
signal-to-noise ratio and the limiting magnitude are the same as in speckle inter-
ferometry (Lohmann & Wirnitzer, 1984).

On the other hand, there are difficulties in applying the bispectrum associated

yith the necessity, due to its 4-dimensionality, of working with large files of di-

gits.

THE BISPECTRUM OF SPECKLE INTERFEROGRAMS

A two-dimensional intensity distribution of the n-th speckle interferogram can be

jritten on the basis of the coherent, quasimonochromatic, spatially-invariant equa-

tion of the image:

(3)

i (X)=0(x)*p (%),
n n
jhere ¥ is the two-dimensional vector, o(¥) is the two-dimensional intensity distri-

bution of an object, * describes the convolution operation, and p (x) is the function
n

of point scattering. Using the convolution theorem we derive an expression for .the

averaged bispectrum of speckle interferograms:

<1‘3’(3,6)>=J‘3’(3,3)-<P;3’(a,?z)>, (4)
n

were 03) (3,7) is the bispectrum of an object image, and <P'*’ (4,7)> is the bispect-
n

rum optical transfer function (BOTF) of the system "atmosphere + telescope". Theore-

tical and experimental investigations of BOTF (Lohmann et al., 1983) have shown that

it does not depend on aberrations of the telescope, and is real and positive at all

frequencies up to the cut-off frequency of the telescope. Owing to this the complex

bispectrum phase of an object is equivalent to the bispectrum phase of interferog-

rams, i.e.
phase {J(3)(a,a)}=phase {<I;3)(§,;)>}. (5)

The Fourier phase of the object image can be directly obtained from the averaged
bispectrum of speckle interferograms without compensation for BOTF. This circumstance
allows us to avoid distortions that arise when dividing spectra.

Using the bispectrum symmetries and the finiteness of the region of determination

of the Fourier spectrum, the volume of the computed part of the bispectrum can be

considerably reduced. Pehlemann and von der Luhe (1989) have shown that to reconst-
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v-

ruct an image of the size NxN it is necessary to calculate the

3N /64+3N°/32+N°/24N/2+1 (6)

number of bispectrum elements, which totals 98 Mbytes for an image of 128x128 and 6.2
Mbytes for 64x64. Here the image size implies either the Fourier spectrum image size
or the image size expressed in resolution elements of the system forming the image.
Therefore the number of elements defined by (6) is essentially overestimated.
Although bispectrum analysis makes it possible to reconstruct both components of

the Fourier spectrum, in practice it is applied more frequently to recovery of the

Fourier phase alone using the relationship:

exp{LB (4, V) }=exp{L(0(1)+0(¥)-O(a+v))}, (7)

where O(1) is the phase of the object, and p(ﬁ,?) is the phase of the bispectrun
Wirnitzer (1985) has shown that the application of bispectiral analysis for recon-
structing the phase spectrum is most expedient since the signal-to-noise ratio is at
its maximum here. For reconstruction of the Fourier modulus it is advisable to use
classical speckle interferometry since this procedure is better developed, and one
element of the power spectrum has higher signal-to-noise ratio than one element of

the bispectrum.

CALCULATION OF THE BISPECTRUM

If the signal-to-noise ratio in an individual speckle interferogram is not large
then it is preferable to compute in the Fourier space the entire selected part of the
bispectrum at once. Technical aspects of selecting the bispectrum part were stated by
Pehlemann and von der Luhe (1989). In that paper it is shown that as the nonredundant
part of the bispectrum one may choose that part of it which is determined by the

following relations:

{(i,j,k, 13|
i=-N/2,...,0;
k=-N/4,...,0;
k21;

i+k2-N/2;

Jjy1,J+1 with {-N/2,...,N/2-1};
12j if k=i;

1€C if k=0}.

Here, i, Jj, k, 1 denote integer spatial frequency indices, for the NxN matrix of

pixels of the discrete Fourier spectrum. The total number of elements 1in conditions
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8) is defined by expression (6). The part of the bispectrum defined by (8) contains
il the information available in the whole bispectrum. Any further decrease in the
siculated part of the bispectrum is accompanied by information loss. If the size of
e bispectrum part determined by expression (6) exceeds the internal storage of the
wmputer then it is better to reduce the size of the bispectrum but not compute it in
nrts. In case the excess is considerable, the size of the bispectrum can be reduced
ly setting limits (Hofman and Weigelt, 1986): |k|, |1|<M, where M is a parameter
[<N/2). By selecting M one may choose an optimum part of the bispectrum. If the
bispectrum only slightly exceeds the storage of the computer then in the selection of
jand I with different signs the bispectrum decreases by a factor of 3, but if they
rre selected to be of the same sign the bispectrum decreases by 1/3. Since we only
1se the bispectrum for reconstructing the phase spectrum, we do not compute elements
hich contain no phase informaticn. These are the elements for which i=j=0 or k=i=0.
In speckle interferometry of astronomical objects fainter than 8" at the prime
focus of the 6 m telescope the quantum nature of light begins to manifest itself. An
individual speckle interferogram of such an object is a group of registered photons.
If the spatial nonuniformity of the detector sensitivity can be neglected then the

intensity distributicn in an individual speckle interferogram can be represented by

the sum of delta functions;
N

i(x)= Z S(x-x ), (9)
j=1 ]

there N is the number of photons registered in the n-th speckle image, ¥ is the
radius-vector of the j-th photon, and 5(x) 1is the two-dimensional Dirac delta-
function. The simple substitution of (9) into the expression for the bispectrum
yields their biased estimates. This bias is associated with the correlation of pho-
tons with themselves (Goodman and Belsher, 1976). To cancel the bias, it is neces-
sary to exclude all possible combinations at which such correlations arise. If the
non-uniformity of the detector sensitivity can not be ignored, then, taking into
account the weight correcting matrix, the intensity distribution in a speckle inter-
ferogram is written as the sum of delta-functions and weights:
N

d(x)= [q(}')-a(z—}i),
=1 ’

(10)

where q(%) is the matrix of weight coefficients, d(¥) is the two-dimensional Dirac
delta-function, §i is the radius-vector of the i-th photon in the frame, and N is the
number of registered photons in the frame. To rcmove the photon bias arising due to
the correlation of the photon with itself, concurrently with the bispectrum it is

necessary to calculate the functions determined by the conditions:

a) j=1=k:
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N

(FT{ q3(§j )-6?x)}>=const; (11)
j=1

b) j=1#k:
N N

<FT{IZIkZIq2(§I)'q(§k)'6(§~}k+§1)}>=const (12)

c) j=k#l,
N N

<FT{lzlkziq(§l).q2(}k)-exp{zni[(7.}l)-(7-}k)]}.6(}-}k+}1)}):Const (1)

d) j#l=k.

N N
(FT{ ) q(x )-expl-2mi(-% )} } qz(}k)-exp{zni(V-}k)}-6(2)}>=const. (14)
j=1 J d k=1
The obtained result agrees with the one described by Winitzer (1985) if the matrix of
weight coefficients is identical to unity. In the general case the phecton bias

function is a complex function that can be written as:

S(J)+S(-§—§)+S(§)—2-const, (15)
where:
N N
S(§)=FT{<Z zqz(}l)-q(}k)-®(§-§k+§l)>}. (16)
=1k=1

Thus, to obtain an unbiased estimate of the bispectrum, it is necessary to calculate
the function S(u) and the constant (14) except for the selected part of the bi-

spectrum. The unbiased estimate of the bispectrum has the form:

1% (@, v)=<D(@)D(¥)D(-u-v)>-S(1)-S(V)-S(-u-v)+2 const, (17)
where
N
D(u)= Z d(x ) exp{-2mi(u-x )} (18)
=4 j j

5
is a Fourier trasform from d(x).

PHASZ RECOVERY FROM THE 4-DIMENSIONAL BISPECTRUM

The relation between the bispectrum phase and the Fourier spectrum phase can be

written as a set of equations:

exp{L[Q(m, n)+@(k, 1)-¢(m+k, n+1)]1}=exp{\B(m,n, k, 1)}, (19)
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vhere k,1, m, n satisfy conditions (8). To solve this essentially redundant set of
¢quations one can either apply the recurrent algorithm (Fartelt et al., 1984) or
solve it by the least-squares method. In the former case the phase spectrum is cal-

culated by the following recurrent relation:

P n
exp{LQ(i, j)}= const Z Z exp{L[Q(k, 1)+@(i-k, j-1)-B(i-k, j-1,k, 1)1}, (20)
k=11=m
- N2 if j <O J*N/2 if  j <0
m=| j-N/2 if j > 0 , n=| N2 if j>o0 (21)
j if  i=k and j<O j if i=k and j>0
if i=0
P
exp{LQ(0, j)}= const Z exp{L[¢(0, 1)+(0, j-1)-B(0, j-1,0,1)1}, (22)

1=1

vhere p is the integer part of j/2. To realize the recurrent algorithm initial con-
ditions are needed, namely, the phase values at three points ¢(0,0), ¢(0,1), ¢(1,0).
The phase value at (0,0) may be assumed to be zero since for real images the phase at
zero always takes on the values * TM, where M is any integer. The values of ¢(0,1)

and ¢(1,0) can be calculated by the formula

N/2
¢(0,1)=2 } B(0, i-1,0,1)/N, (23)
i=2
vhere N is the number of spectrum elements along the Y axis. A similar formula is
used for @(1,0). One can achieve a considerable increase in the signal-to-noise ratio

in the reconstructed phase spectrum if the summation in (20) and (22) is done with

the weights:

P n
exp{LQ(i, j)}= const z Z W(i-k, j-1,k, 1) exp{L[@(k, 1)+p(i-k, j-1)-B(i-k, j-1,k,1)]1}.
k=11=m

Values proportional to the signal-to-noise ratio of the combined spectrum are chosen

as weight coefficients W(i, j, k, 1):

exp{L[Q(k, 1)+ (i, j)-B(i, j, k,1)1}. (25)

Shortcomings in the recurrent algorithm are the facts that the error of determin-
ation extends from low to high frequencies and is permanently accumulated. Spectrum
points with a modulus value close to zero are especially important since at these
points the phase may have an uncertain value, which, when used recurrently, distorts

the phase spectrum. When averaging, these points must have zero weight. When solving
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the redundant system- (19) by the least-squares method one can avoid extending the
error at high frequencies by making full use of the bispectrum’s redundance. In the
iteration algorithm that we have developed the whole phase spectrum below the cut-off
frequency of the telescope is estimated at each iteration. The Dbasic idea consists

of reconstructing the phase spectrum @(k, 1) for which the expression

) ) {[@(k,1)+@(1,j)—@(i+k,j+1)—ﬁ(i,j,k,1)]/oB(i,j,k,1)}2 (26)

kK 1 1 ]

has a minimum, where OB(i,j,k,l) is the standard bias of the bispectrum phase. As a
zero approximation we use the phase spectrum obtained by the recurrent procedure. To
obtain a further approximation, we use the following algorithm:

- from the files are selected: the element of the bispectrum phase B(i,j,k, 1), its
standard bias OB(i,j,k,l), and the elements of the Fourier phase q%-1(i’j)’ q;_l(k,ﬂ
and @m_l(i+k,j+l) derived by the preceding iteration;

- new values of the phase @m(i,j), @m(k,l) and @m(i+k,j+l) are calculated using the

following relations:
exp{LQ_(i+k, j+1)}=exp{tlQ _ (i, ))+¢ _ (k N-p (i jk 1I},
exp{L@m(i,j)}=exp{L[@m_l(1+k,j+1)—@m_1(k D+ (1 j k 1)1},
exp{L@m(k,l)}=exp{L[@m_1(i+k,j+l)_@m_1(i,j)+B (i,j,k, 1)1} (27)

- new values are summed with the weights 1/GB(i,j,k,l) in a file specially allocated
to a new iteration;

- the procedure is ccmpleted for all elements of the bispectrunm;,

- the averaged phase values are taken as the m-th approximation.

The values of expression (26) are selected as the criterion. As a rule, after 10-
15 iterations the value of the expression is little affected.

In conclusion it should be noted that the algorithm for the bispectral analysis of
speckle interferograms described in the paper is not unique. Algorithms that use the
bispectrum properties more efficiently are also possible. Nevertheless, reconst-
ruction of the phase spectrum by the least-squares method most effectively exploits
the bispectrum’s redundance to increase the signal-to-noise ratio, and the use of the
described algorithm for reconstructing astronomical images makes it possible to study

targets with a high spatial resolution.
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