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GRAVITATING LIGHT BALL: STATIONARY STATES
AND COLLAPSE DEVELOPING
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ABSTRACT. Equations of motion convenient for numerical solution are deduc
within the frame of GR in a spherically symmentic case for a bal
filled with light-gas. It is also shown that the variables of the graviti
tional field can be eliminated from the equations of motion converting
gravitational interaction into the equivalent-direct interaction of matt
with itself. Stationary states, oscillation modes and instability modes a

computed, and processes of decay of "hot" states and collapse are studied

INTRODUCTION i

The pressure of light grows with temperature as T4 - faster than the pressure ¢ i
any massive matter - and is the most important factor of dynamics of the heaviest an ]
hottest celestial objects. So it is reasonable to single out this factor and t
analyze the behaviour of the pure light in the gravitational field that it creates
In this paper we consider the static distribution and the collapse of the thermal ri
diation in a large spherical black cavity. If the walls of the cavity are thin ar
weigh little, it can be viewed as a large balloon filled with light - a light ball.

The static equilibrium of a spherical light ball in the frame of GR was analyze
in (Sorkin et al., 1981), where the main attention was paid to the entropy of th
equilibrium states. It was found that depending on the ratio M/R at the surface ¢
the ball it might have no equilibrium states at all, or have one or more such state
corresponding to the local extrema of the entropy. Referring to the theory of sta
stability (Weinberg, 1972), Sorkin et al. (1981) demonstrated that among th
equilibrium states of the light ball only the coolest one is stable.

In the present paper we reproduce in a more direct way some of the results o
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Sorkin et al. (1981) and go further:
- look for the static solutions that have any mass and surface temperature;
- formulate the spherically symmetric nonstatic problem;
- find spherical instability modes near the equilibrium states;
- compute the propagation of a local perturbation of unstable static state;
- demonstrate how an unstable state decays (collapses or anticollapses).

In the static case, the pressure P and the energy density W of the black-body

radiation obey the law

=aT?, W=3P, (1)

where

a=8T°k*/15¢>h°=7.5-10 " erg/cm’ - grad®,
and T is measured in Kelvin. In the nonstatic case the notion of temperature and the
state equation (1) can be used, only if a local thermal equilibrium is reached fast
enough compared to the changes of other values. We will suppose that a small amount
of dust or other scattering agents are present inside the ball, so the radiation
length is small enough, the black-body radiation behaves like a light-gas, and the

state equation (1) is always true.

We will consider only spherical configurations of matter and use the standard

coordinates

gw=diag{—u(t,r),A(t,r),rz,rzsinze}. 2)

EQUATIONS OF MOTION

In GR the gravitational interaction of matter obeys the Einstein-Hilbert
equations
Rt=-gmeT", (3)
1% v
where G=6.67-10 %cm°g ‘s, and T is the energy-stress tensor of matter. The Einstein

tensor for metric (2) is

((1-(r/4)’ A 0 0 )
2 ADr
r
_ A 1-1/4-rD’/(4D) 0 0O
R= Azr r? ’ (4)
v 2
0 0 EE 0
2
3
| @ 0 0 E)

where A’'=0A/0r, A=0A/8t, etc., and
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The stress-energy tensor for the light-gas moving radially with velocity
v=thlu(t,r)/2] is

Th=pst+ (w+P)UMU
14 v v

where U“={-ch(u/2)V3, sh(us/2)v4,0,0}, so

{
~-2chu-1 +2 v A/Dshu 0 0 1
-2¥D/Ashu 2chu-1
mo_ . (5)
Tv =P 0
| 0 )

Equation (4) gives 4 independent equations

1-(rs/4)’

- = p(2chu+1), (6.1)
r
1 L (6.2)
o = ~2p/A/Dshu
1—1/A—rg /(D) _ _ochu-1), (6.3
r
E’=-p, : (6.4)

2

where p=8TGP, for 4 unknown functions A(t,r), D(t,r), p(t,r), u(t,r). This system is
rather messy, especially the latter equation, containing A4,D”. An equivalent, but
more clear system can be obtained, if equations (6.2), (6.4) are replaced by the
linear combinations of all equations (6) - by the covariant divergences of both sides
of (4):

~

" = -grnertt R = -gner
tiu tip r;p r;p

Due to the Bianci identities, the left-hand sides of these equations vanish, and w

have two equations

™ =0, ™ =0, (7)
t5 1 rip .

containing b, u. Solving system (7) for b, u and using equation

A=-2VA/DADrpshu, (6.2a)

(stemming from (6.2)) to exclude A, we obtain
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p= /21 -p’shu + 4shu Arl— - 2u’ (8.1)
P=V 7 Z2vctu 7P p Pr ’ .

, 3P 4 21—chu + u'shu - 2Apréh2u
i=-/2 [ 2,2 r (8.2)
A D 2 + chu ) )

These equations combined with equations (6) can be rewritten as

A__ A1 + Apr(2chu+1), o
1 r
g = é;.l. + Apr(2chu-1), -2

make 4 first-order partial derivative equations suitable for analysis and numeric
solution.

The systems (8), (9) are rather curious. The functions p,u describing the state of
the matter play there a more fundamental role than the metric elements D, A. From the
mathematical point of view, the knowledge of functions p(t'o,r), u(to,r) is sufficient
for the computation of D(to,r), A(to,r), p(to,r), u(to,r), and completely defines the
evolution of matter.

Indeed, using p(to,r), u(to,r) (and the regularity condition A(t,0)=1) we can
solve (9.1) and find A(to,r), then solve (9.2) and find D(to,r) (the unessential

normalization factor can be set by the relation
D(to,r3) = 1/A(t0,r3)

on the surface of the ball). After that 13, u at t=to are immediately computable.

From the physical point of view, the entities D, A, since they do not enter initial
conditions, are auxiliary functions and can be excluded from the equations of matter
evolution.

Indeed, defining a running mass M(t,r) by the relation

A=1/(1-M/r), (10)

we can cast (9.1) to the form

M'= pr?(2chu+1), (11)
whence
p 2
M = [ p(2chu+1)rodr. (12)
0

Equation (9.2) gives
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D = const-.-exp j [ —_— + Apr(ZChu—l)] dr . (13
0

Substitution of (10), (12), (13) into (8) transforms it into a set of tegron
differential equations for functions p, u only, describing the evolution of matteh
interacting directly with itself. s
Equations (9) are curious in one more aspect. According to (9), an abrupt 1locid
perturbation of p(t,r) near some point r, leads, formally, to the instant change d °
D everywhere and of A at rZro, which seems to violate the causality principlee
Actually, the causality principle is not violated for two reasons. One of them I
that equation (6.2) (which is always valid) clearly tells that a reacts to changes d
p,u only locally. Another reason is that according to (9.2) after the perturbatia
only the normalizations of D within each region r<ro and r>r are changed, and thb
effect cannot be noticed instantly: to measure the change in the ratio of the norma
lizations in the two regions, one has to wait for the arrival of a light signal fra
the other region. So, no signal moving faster than light can be transferred due t

equations (9).

STATIONARY STATES
C

In the static case b=&=u=0, equation (8.1) becomes trivial and other equationi

reduce to

D_ _p_ =

D~ 2p (14j
1

4= -1 sapr, (151

A

D’ -1

-ﬁ = —?— + Apr (16

Equation (14) says that p~1/D” and, together with (1), that T?~1/D. It is just 0
particular case of the well-known fact that the equilibrium temperature in the
gravitational field is not constant. Instead, the visible temperature at point

observed from point x does not depend on y I

T(y:x)=T(y)\/g:0(y)/goo(x) = T(x).

If the observation point x is inside the light ball and the observed point y is a:
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its surface, the factor

/gOO(y)/gOO(X) = d

and is a blue shift, due to which the temperature near the center of the light ball
should be higher than at the surface. Substituting p(r)=pOD(O)2/D(r)2, where pc=p(o)

is the pressure at the center, and using instead of D,A the functions

B(r)= M(r)/r = 1-1/4, £(r) = D(0)2/D(r)3,

we rewrite (15), (16) as

B'=3p rf - B/r,
c (17)

f'72f = -(B/r + pcrf)/(l—B).

Since f£(0)=1 and B(0)=0, the boundary conditions in (17) at r=0 are completely fixed.

The system (17) has an exceptional solution
B=23/7, f=7Tp/r’ (18)
e e Cc

that 'does not satisfy the condition f(0)= 1. As we shall soon see, every solution
B(r) of (17) tends to Be at r-o, so Be is an attractor.

Since photons are massless and the boundary conditions at the center do not
contain any scale, equations (17) should be scale-invariant. Indeed, if {B(r), f(r)}

is the solution of (17), the couple of functions

B(r) = B(rA), f(r) = f(r,A)

is the solution of (7) for the same initial conditions at r=0 and for p replaced by
. C
Ec= pcl. Therefore, it is sufficient to know the function B,(r) satisfying the

parameter-free equations

B,= 3rf1- B,/r, f'/2f = -(B,/r + rf)/(1-B,) (19)
with the conditions B,(0) = 0, f(0) = 1: solution B(r) of (17) for any p_ can be
obtained from B,(r) with a scale transformation.

The functions B,,f are easily computed numerically. The behaviour of f 1is
better seen, if one plots F=3r’f instead of f (see Fig.1)

The function B,(r) starts to increase parabolically from zero, reaches at r=1.92
the maximum B = 0.493, then slowly decreases and reaches at r=1i.6 the first

max

minimum Bmm = 0.411, and then slowly oscillating tends to the asymptotic value

Ba3=3/7. At large r

3/

By ar > *cos (Win(r/r ))+3/7, (20)
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where a~0.119, W~(47/16)'%, and r ~1482. The function F due to relation F=B, + ri

has a similar asymptotic.

The solution B(r), f(r) for the given p_= T(0)4a8WG is

B(r)= B (rA), f(r)= £ (rA), A=/p . 2k :
e
Fig.1. Basic solu-
tion of static
equation.
f i [ | I 1 ! { | l 1
) 10 T

i Wl

At large r, and r every solution tends to the exceptional one, so it is an attracto;
The exceptional solution Be can be also considered as an improper limit of B at péw

Let us return to the physically more interesting functions D(r), p(r)= pcf(r).T
find D, one has to fix the radius r3 of the ball. Since outside the ball there |
no matter and the Schwarzshild solution is true, we should have at the surface D(rg

1—B(r3). Hence,

D(r) = [1 - B(ra)]Vf(rs)/f(r).

The curves B,D and T=O.5-p1/4 for two states with the same mass and radius (M=0.!

r3=1) are given in Fig.2. The temperature at the center for the hot solution is thre |

times larger than for the cool one.

STATIONARY SOLUTIONS CONTINUED FROM THE SURFACE

T R
[T e )

In case of cosmic objects observed from outside, it is more natural to use as;

B

known parameter not the temperature at the center, but rather the total mass M;= M(e

and the temperature TS= T(r3) at the surface of the body. Due to the regularit

condition B(0)=0, the only free parameter is T(O)~pi/4 and the values

’

63 (pc)= Bl (2"3 pc)
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' ; 1/4 /
| =
T3(pc) pc fi(rS pc )
make a l-parameter family (see the spiral-like curve in Sorkin et al., 1981). The
natural question arises which solution of equations (15), (16) correspond to Mw and T3

not belonging to this family.

1 -

T

| HOT

1 -
Fig.2. Two states
with the same mass
and radius. -

B T Y L
!2—__’___-

Three typical solutions of (15), (16) are drawn in Fig. 3.

2 4

Fig.3. Three states
in spherical layers. |
Thick curves - B,
thin - T, dashed - D
B=0 at r=0.3, 0.6.
T=0, B=i at r=0.4.
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The solutions continued from the surface toward the center generally do not reach it

at some point r, either the mass M(r) (and function B(r)) becomes zero, or functio

B(r) reaches 1-and the temperature T(r)=T3V§Zf3)/D(r) gecomes infinite. Such solu
tions describe the static distribution of the black-body radiation not in the globe
but in the spherical layers enclosed between two hard spheres of radii ri> r, and r,
The value Mi=B(rl)r1 is the mass of the inner sphere and T(ri) is the temperature o
its surface. If B(rl) is close to 1, the radiation is condensed in a thin layer o
the inner sphere, like an ocean on the surface of the Earth. To prevent the radiatia
from falling toward the center, the inner sphere should be hard enough to re
sist its pressure.

Now we are able to answer the question what happens in the original model (wher
the internal sphere is absent) if one pumps into the cavity too much radiation, s
the ratio B=M/r will exceed the limit B;m( Since we know all the static solution
and among them there is none (neither regular, nor singular) with such B, th
’overdosed’ radiation will never reach thermal equilibrium; the state will neve

become static.

UNSTABLE STATES ]
]

If M°° and r, of the light ball (here and below - without the internal sphere) ar
fixed and E%1n<b<Ban’ there are several solutions of B(r) describing different phy(
sical states of the light ball with the same mass M°° (see Fig.2). As was pointed i}
(Sorkin et al., 1981), among these states only the coolest one (which is described b
a monotonically increasing part of B(r)) is stable. The unstable states decay: thr

long-wave component of a small perturbation grows exponentially with time as et/ﬂ i

the early stage of the decay, while the perturbation is still small, the decay tinC
and the shape of decay harmonics can be found like the small oscillations.

Let the state be close to the static solution po, Do’ AO:

D

p=p, * Op, u=du, D=D_ + oD, A=A+ 04,
where Op,... and their derivatives 8p, Op’,.. are small. Substituting this in (8.1),
>
(8.2), (6.2a), keeping only the terms linear in Op,..., and excluding D’'/D in (8.%‘

by means of (9.2), we obtain the system of three equations

P, .

. D, 84 |pr + 11+ op |ar - -2 | + Upr
ou=-/ — 0 r 0 2 2p
Ao 2po 0

p’ 1§
. Dy Py | du a4 p.r - 220 o ,
o=/ & 5 0’0" r p, 5
0 .

’

54



we
Text Box


w

4= -20uD Apr vV A/D.
0O0O0 0O 0

. Seeking oscillation solutions

1

1

du = u(r)coswt, Op = E(F)Sigwt, 4 = Alr )51n(ot

expressing pé through AO, P, with the help of (14), (16), and excluding A from the

equations for &,i), we finally obtain

- _ = Ao"3 - 3 Ao
u'=u r—+3Aopor —p5 <5
0 0
(22)
& = Ao 2 2 = Ao i
p'= 2up0 To [(o + 2p0A0D0(por + 1)] - 2p + 2Aopor .

The regularity conditions in the center are:

u(0) = p’ (0) = 0.

The boundary (normalization) condition is p’ (0)=const. In case of instability modes W
becomes imaginary, but equations (22) do not change: only parameter w2 becomes
negative.

Fig.4 shows the curveé p(r), ulr) for several values of >
Clearly, if w=0, the knot of the function u(r) coincides with the point of maximal
B(r).

The proper values (9 are fixed by the condition u(r ). The oscillation mode with
negative (.0 exists only if the globe radius r, is greater or equal to the point r "
where u changes sign. One can also see that up to r, rather large compared to r only

one instability mode (mode with ©°<0) exists.

DECAY AND COLLAPSE OF UNSTABLE STATE

Due to the nonlinearity of the equations of motion, any perturbation of an un-
stable state excites the instability mode and this mode starts to grow exponentially
as sh|0)t|. Depending on the sign of excitation, the state may evolve toward the
cooler state, or evolve toward the hotter state and pass into collapse. The process
is rich in details that are not easy to predict from general consideration. To have a
closer look at the evolution of the light ball, the system of equations (8.1), (8.2),
(6.2a), (9.2) was solved numerically with a number of initial states. One of the
obtained movies is represented by a series of Figs.5.0-5.9, where v=thu/2 (solid

line), T=0.5-p'”* (thin line), B=M/r (dotted line), vD (dashed line), and r=1. The
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dotted vertical line indicated the maximum of B.

Fig.4. Oscillation and
instability modes,
p(0)=10. Upper part:

2u (tlalick), p/p (thin)
for W'=4, 0, -0.7. Lo-
wer part: B (thick),
vD/A (dashed), T/2
(thin).

o

'''''''

The initial state (Fig.5.0, t=0) is an unstable stationary state locally perturbe

by pushing a layer of light-gas toward the surface (v>0).

T, s #5286 mmm =g e« 52 s . i 5w © o DA 45 4 33 O 1 43 500

Fig.5.0. The initial
state.

0

Soon (Fig.5.1,t=0.2) this push turns into two localized waves: compression wav
moving toward the surface and decompression wave moving toward the center.

Since the push was strong - the initial velocity was greater than the velocity d
sound = 1/V§ﬂ— both waves have steep shock fronts and are followed with tails ¢
small oscillations. At t=1 the right wave is already reflected from the surface
while the other wave is still approaching the center since, due to the factor Véz
in (8), the speeds of light and of sound are smaller in the central region than n%i

the surface.

At t=2.6 (Fig.5.2), the growth of the instability mode becomes well pronounced.
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Fig.5.1. The compres-
sion and decompres-
sion waves.

iiim

Fig.5.2. Growth of
instability mode.

0f course, the initial perturbation, due ‘to nonlinearity of the equations, excites

-imany other oscillation modes, but they stay small and invisible, and only the insta-
bility mode shows up.

Next slide (Fig.5.3) at t=3.9 shows a high peak of pressure, when the left wave is

reflected from the center and turns into a number of wavés.

'Fig.5.3. Reflection j 4~ —_—

from the center.

This is one of the hard moments for the calculation procedure since, besides the
growth of wave amplitude, the finiteness of step Ar (this movie was produced with
Ar=r3/300) excites the noise ultrasound waves concentrating near the center. To get a
clean picture, one has to damp these ultrasound waves, which is done with the help
of some smoothing local averaging of p and u equivalent to the admission of nonzero

diffusion length and viscosity of the light-gas.
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At t=5 (Fig.5.4),the instability wave stops growing and starts reflecting from tl
8 surface. The state of the light ball at this moment is similar to the stable m(m
state in Fig.2. The stopping of the instability wave is an unrealistic feature oftle
model: in case of a star such a wave would cause an explosion and a shake-off of pa
of the mass. But here, since the light-gas is contained within a hard sphere and
shake- off is impossible, the instability wave is reflected and soon the light-g

starts moving toward the center.

o N L 1l
Fig.5.4. The phase T
of quasi-homogeneous
distribution.
0 _lfl,.....ﬁ.g—_\ S /;,/f\{\: -;;/V‘Q_“

At t=9.8 (Fig.5.5), the early stage of collapse 1is seen. The hump on the curve
is forming. The speed of falling light-gas is about the speed of sound, so the waw

from the center hardly move and gradually fade.

Fig.5.5. Beginning of e
collapse. ~.

o I

At t=10.9 (Fig.5.6), the collapse is well-developed, B is about 0.77.
max
The speed of falling light-gas now reaches half of the velocity of light. T

motion of waves in the internal region (to the left of the ’'bottle-neck’, where B |

maximal) is practically stopped (Vg;zﬁl 0). This picture later does not chang
except that the light-gas in the external region is constantly sucked inside, %
approaches 1,.and the temperature outside becomes lower and lower (Fig.5.7, t=17).

The speed of falling light-gas now reaches half of the velocity of light. T

motion of waves in the internal region (to the left of the ‘bottle-neck’, where B!
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i [
‘maximal) is practically stopped (VD/A ~ 0). This picture later does not change,

)
| except that the light-gas in the external region is constantly sucked inside, B

€

max

approaches 1, and the temperature outside becomes lower and lower (Fig.5.7, t=17).

Fig.5.6. Mid-collapse: R
time stops in the cen- LR )
tral region. -

Fig.5.7. Late collapse: - L
almost no light-gas in . T T
the outer region. T

4

The model of ball with hard walls is rather unrealistic, so it is interesting to
know what will happen in case of open light ball, having no walls. The calculation of
evolution in an wunlimited region of space needs a more complicated program, so as to
obtain a preliminary picture of collapse of wallless ball, we imitated the absence
of walls by changing the boundary conditions at the surface: we set u’=0 instead of

u=0, thus letting the light-gas leave the sphere r<1. We took the state of
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mid-collase as an initial state and repeated calculations. Without walls, ti 5
evolution was similar to that of a walled ball, only part of the light-gas near ti

boundary, was going off.

CONCLUDING REMARKS

The static and dynamical properties of the light ball are mainly in harmony wif
what was expected from crude estimates and general considerations. The mal
difference of the light-gas from the heavy matter is that the stable state of th
light ball (the coolest solution) may have arbitrary large mass if the radius r3i
large enough (only the ratio M/r is limited by Bm“/Z). However, if the ratio 2M
somewhere exceeds Ban’ the 1light ball collapses, turning into an object seen fry
outside as a dark ball of standard radius r~2M. In the frame of GR, nothing can st
the collapse.

A self-graviting light ball is a good object for the purpose of comparing th
predictions of GR with predictions of other gravitational theories since it i
sensitive to the relativistic and nonlinear terms in equations of motion and |
reasonably easy to analyze numerically even in the nonstatic case. If a new theor
claims to stop collapse of a heavy star, it should first be able to demonstrate |
for the light ball. Same can be said for the supposed rebounce.

A light ball may be considered_as a crude approximation of a quark star. Indeef

the matter in the quark star models is usually supposed to obey the law
1
P -— §[W - 4b],

where b is a bounding energy density of the quark plasma. Except for the surfad (
layer, where W~4b, the properties of quark matter inside the star are close to thos
of the light-gas, so the quark star may be viewed as a light ball in an elastic bag
It would be interesting to calculate the oscillation modes of quark stars and compaive |
them with those of the light ball. 2( i

The author is grateful to V.0.Soloviev, V.V.Scokolov, and V.Unt for discussions. =
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