THE SLIT SPECTRA OF GALAXIES OF THE SECOND BYURAKAN SKY SURVEY. VIII

STEPANIAN J.A., LIPOVETSKY V.A., Special Astrophysical Observatory of the Russian AS, Nizhnij Arkhyz 357147, Russia

ERASTOVA L.K, HAKOPIAN S.A., Byurakan Astrophysical Observatory of the Armenian AS, Byurakan 378433, Armenia

IZOTOV YU.I., GUSEVA N.G.

Main Astronomical Observatory of the Ukrainian AS,
Kiev, Ukraine

Received July 31, 1992

ABSTRACT. The results of the follow-up spectroscopy of 34 galaxies from the Second Byurakan Survey are presented. The observations are carried out with the 6 m telescope of SAO RAS. The emission lines are observed on the scans of the most of galaxies. The redshifts and luminosities of all the galaxies are determined. SBS 1616+503 was discovered to be one possible Seyfert type galaxy.

OBSERVATIONS

In the previous seven papers of this series (Markarian et al., 1984; Lipovetsky et al., 1988; Stepanian et al., 1991, 1993a,b,c) the results of spectral observations of 368 galaxies from the Second Byurakan Sky Survey are presented. In this paper the data on the slit spectra of 34 galaxies are collected together. These are the objects, which are out of the fields of SBS Survey and located in the region $\alpha = 13^h00^m - 17^h20^m$, $\delta = +49^\circ - +61^\circ$.

Spectral observations have been carried out with the 1000-channel TV scanner (Drabek et al., 1986), which was attached in the Nasmyth focus of the 6 m telescope of the Special Astrophysical Observatory. The diffraction grating giving a dispersion of about 100 Å/mm and a spectral resolution of 1.9 Å per channel was used. For some galaxies two scans in the same spectral region with approximate equal short exposures were obtained. The first scan of the objects was obtained on the object strobe, then on the sky strobe, and these two scans were added to each other.

Table 1 presents the data on investigated objects: 1 - SBS designation in accordance with the survey list, which will be published later, 2 - the date of observations, 3 - observed spectral region in Å, 4 - exposure time in seconds, 5 - redshifts determined from the most confident emission or absorption lines, corrected for the solar motion, $\Delta z = 0.001 \mathrm{sinl^{II}} \ \mathrm{cosb^{II}}$, 6 - apparent magnitude in the blue spectral region, 7 - luminosities corrected for extinction in our Galaxy for H = 75 km/s Mpc, 8 - survey type. The general list and finding charts of the investigated objects are in preparation.

In the descriptions the results of studying the slit spectra are presented: morphology for some objects, observed emission and absorption lines, the estimations of the basic emission line intensity ratios, spectral type of a galaxy.

Table 1.

Designation Date of		Spectral	Exposure			Survey	
SBS	observation	on range Å	time	(s) z ₀	m _B	$M_{\overline{B}}$	type
1	2	3	4	5	6	7	8
1304+539	12.02.91	3520-5560	246	0.0242	15.5	-19.7	se
1315+606	12.02.91	3520-5560	234	0.0077	18.0	-14.7	d2e
1315+593	12.02.91	3600-5640	260	0.0290	18.0	-17.6	ds2e
1318+520	15.03.91	3660-5660	220	0.0170	16.0	-18.4	de
1319+539 A	12.02.91	3610-5630	286	0.0336	18.5	-17.4	de
332+545	12.02.91	3520-5560	331	0.0508	18.0	-18.8	sd1e
332+599	14.03.91	3640-5650	447	0.0352	17.5	-18.5	ds3e
333+573	15.03.91	3670-5660	239	0.0249	18.0	-17.3	de
	20.03.91	3640-5660	373				
341+594	12.02.91	3520-5560	198	0.0108	17.5	-16.0	d2e
351+552	20.03.91	3640-5660	361	0.0402	18.5	-17.8	s1e
351+589	12.02.91	3520-5560	255	0.0261	18.0	-17.4	sd2e
.353+597 A	12.02.91	3520-5560	331	0.0228	17.5	-17.6	d2e
.353+597 B	12.02.91	3520-5560	268	0.0108	18.0	-15.5	de
357+563	12.02.91	3530-5570	260	0.0346	17.0	-19.0	dse
358+550	12.02.91	3520-5570	471	0.0137	14.5	-19.5	sd2e
411+584	12.02.91	3620-5570	261	0.0747	18.0	-19.6	s2
421+544	07.04.91	3700-5700	2178	0.0217	18.5	-16.5	de
430+596	20.03.91	3640-5630	670	0.0070	17.5	-15.0	de
430+521	14.04.91	3690-5690	694	0.0265	18.0	-17.4	s1e
446+595	12.02.91	3520-5570	230	0.0081	18.0	-14.9	d2e
453+526	14.04.91	3690-5690	335	0.0118	17.0	-16.7	sd1e
504+514	12.02.91	3610-5630	222	0.0131	16.5	-17.1	sde

Table 1 (continued)

1	2	3	4	5	6	7	8
1524+554	14.03.91	3630-5670	263	0.0119	17.0	-16.7	d2e
1541+516	14.03.91	3640-5640	377	0.0360	18.0	-18.1	de
1541+590	12.02.91	3520-5560	279	0.0422	19.5	-17.0	se
1555+515	14.03.91	3640-5630	953	0.0131	18.0	-15.6	sde
1558+585	12.02.91	3520-5560	292	0.0144	18.0	-15.7	sd2e
1559+585	12.02.91	3520-5560	311	0.0142	14.5	-19.6	ds2e
1607+493	12.02.91	3520-5560	196	0.0453	17.5	-19.1	de
1610+586	12.02.91	3610-5630	159	0.0454	17.0	-19.7	ds2e
1614+600	12.02.91	3610-5630	168	0.0310	18.5	-17.3	s1e
1616+503	12.02.91	3610-5630	295	0.0433	16.0	-20.5	dse
1632+579	12.02.91	3700-5720	516	0.0181	19.0	-15.7	de
1707+565	20.03.91	3640-5660	247	0.0123	17.0	-16.9	se

DESCRIPTION

- 1304+539 N₁, N₂, H_{eta}, [OII] λ 3727 emission lines are observed. The ratios N₁/H_{eta} $^{\sim}$ 3, [OII] λ 3727/H_{eta} $^{\sim}$ 3. The lines of Balmer series H_{δ} H₁₀ and H and K CaII are seen in absorption.
- 1315+606 N_1 , N_2 , H_β , H_γ , [NeIII] λ 3869 and [OII] λ 3727 emission lines are present in this spectrum. $N_1/H_\beta > 3$, [OII] λ 3727/ $H_\beta \sim 3$.
- 1315+593 The emission lines N_1 , N_2 , H_β , [OII] $\lambda 3727$ are observed in the blue region of the spectrum. $N_1/H_\beta\sim 3$, [OII] $\lambda 3727/H_\beta>3$. Balmer series lines $H_\delta-H_{10}$ are present in absorption.
- 1318+520 There are the following emission lines N₁, N₂, H_{β}, H_{γ} and [OII] λ 3727. N₁/H_{β} ~ 3, [OII] λ 3727/H_{β} > 3.
- 1319+539 A- The spectrum shows strong emission lines N_1 , N_2 , H_β , H_γ , H_δ , [NeIII] λ 3968 + H_ϵ , [NeIII] λ 3868 and [OII] λ 3727. $N_1/H_\beta > 3$, [OII] λ 3727 > H_β . This object consists of two condensations, whose spectra are similar to each other and have comparable redshifts.
- 1332+545 N₁, N₂, H_{β}, and [OII] λ 3727 are observed in emission. N₁/H_{β} < 3, [OII] λ 3727/H_{β} > 2.5.
- 1332+599 There are N₁, N₂, H_{β}, and [OII] λ 3727 in emission, and H and K CaII in absorption. N₁/H_{β} ~ 3, [OII] λ 3727/H_{β} ~ 1.5.
- 1333+573 The emission lines N_1 , N_2 , H_β , [OII] λ 3727 are observed with the following intensity ratios $N_1/H_\beta < 3$, [OII] λ 3727/ $H_\beta \sim 1.5$.
- 1341+594 B- N₁, N₂, H_{β}, H_{γ} and [OII] λ 3727 are seen in emission. N₁/H_{β} ~ 3, [OII] λ 3727/H_{β} > 2.5.
- 1351+552 [OIII] $\lambda\lambda4959$ -5007, Balmer series lines H $_{\beta}$ H $_{\epsilon}$ and [OII] $\lambda3727$ are observed in emission. N $_1$ /H $_{\beta}$ > 3, [OII] $\lambda3727$ /H $_{\beta}$ > 2.
- 1351+589 This spectrum shows N₁, N₂, H_{β}, and [OII] λ 3727 in emission. N₁/H_{β} \geqslant 3, [OII] λ 3727 ~ H_{β}.

- 1353+597 A- The emission lines N₁, N₂, H $_{\beta}$ and [OII] λ 3727 are observed in the blue region of the spectrum.
- 1353+597 B- N₁, N₂, H_{eta}, [OII] λ 3727 are present in emission. N₁/H_{eta} < 3, [OII] λ 3727/H_{eta} > 2.5.
- 1357+563 Emission line H_{β} is observed, [OII] λ 3727 is suspected. The lines of Balmer series $H_{\epsilon}-H_{11}$ are seen in absorption.
- 1358+554 N_1 , N_2 , H_β and [OII] λ 3727 are observed in emission. $N_1/H_\beta=3$.
- 1411+584 There are low contrast emission lines of comparable intensities N_1 , H_{β} , and [OII] λ 3727, absorption lines $H_{\gamma}-H_{g}$, H and K CaII in this spectrum.
- 1430+596 The low contrast lines N_1 , N_2 , H_8 are present in emission.
- 1430+521 The emission lines N₁, N₂, H_{β} and [OII] λ 3727 are observed. N₁/H_{β} \geqslant 3, [OII] λ 3727/H_{β} \sim 1.
- 1446+595 The following emission lines are seen in the spectrum: N_1 , N_2 , H_β , [OIII] $\lambda 4363$, H_γ , H_δ , H_ϵ , [NeIII] $\lambda 3869 + H_\delta$ and [OII] $\lambda 3727$. $N_1/H_\beta > 3$, [OII] $\lambda 3727 \geqslant H_\beta$.
- 1453+526 N_1 , N_2 , H_B are observed in emission. $N_1/H_B\sim 3$.
- 1504+514 The spectrum shows the following emission lines N_1 , N_2 , H_β , HeII λ 4686, $H_\gamma-H_8$, [NeIII] λ 3869 and [OII] λ 3727. N_1/H_β > 3, [OII] λ 3727/ H_β ~ 2.
- 1524+554 The emission lines N_1 , N_2 , H_β H_δ , and [OII] $\lambda 3727$ are observed in the spectrum. $N_1/H_\beta\sim 3$, [OII] $\lambda 3727/H_\beta>1$.
- 1541+516 N₁, N₂, H_{β}, H_{γ} and [OII] λ 3727 are seen in emission. N₁/H_{β} \geqslant 3, [OII] λ 3727/H_{β} \sim 1.
- 1541+590 There are the following emission lines on the weak continuum: N_1 , N_2 , H_β , [OIII] λ 4363, H_γ , H_δ , H_ϵ , H_ϵ , H_ϵ , [NeIII] λ 3869, H_9-H_{11} , [OII] λ 3727. $N_1/H_\beta>3$, [OII] λ 3727/ $H_\beta<1$.
- 1555+515 N_1 , N_2 , [OII] $\lambda 3727$ are seen in emission.
- 1558+585 N_1 , N_2 , H_β , [OII] $\lambda 3727$ in emission and $H_\epsilon H_g$, H and K Ca II in absorption are observed. $N_1/H_\beta < 3$, [OII] $\lambda 3727/H_\beta > 1$.
- 1559+585 This spectrum is similar to that of the previous object SBS 1558+585. N_1 , N_2 , H_β and [OII] λ 3727 are observed in emission and H_ϵ H_g are seen in absorption. $N_1/H_\beta < 3$, [OII] λ 3727/ $H_\beta > 1$.
- 1607+493 In this spectrum N_1 , N_2 , H_β and [OII] $\lambda 3727$ are observed in emission. $N_1/H_\beta\sim 3$, [OII] $\lambda 3727/H_\beta>2$.
- 1610+586 There are the following lines N_1 , N_2 , H_β - H_δ and [OII] $\lambda 3727$ in emission. $N_1/H_\beta\sim 1$, [OII] $\lambda 3727/H_\beta>2$.
- 1614+600 The emission lines N , N , H $_{\beta}$ -H $_{\delta}$ and [OII] $\lambda 3727$ are observed. N $_1$ /H $_{\beta}$ $^{\sim}$ 1, [OII] $\lambda 3727$ /H $_{\beta}$ > 1.5.
- 1616+503 N_1 , N_2 , H_B , [OIII] $\lambda 4363$ and [OII] $\lambda 3727$ emission lines are present.

- $N_1/H_{\beta} > 3$, [OII] $\lambda 3727/H_{\beta} \sim 1$. H and K CaII are seen in absorption. Probably a Seyfert type galaxy.
- 1632+579 The following emission lines N_1 , N_2 , H_β , [OIII] $\lambda 4363$ + H_γ , H_δ , H_ϵ , H_8 , [NeIII] $\lambda 3869$ and [OII] $\lambda 3727$ are observed. $N_1/H_\beta > 3$, [OIII] $\lambda 3727 \sim H_\beta$.
- 1707+565 There are N_1 , N_2 , $H_\beta-H_8$, [NeIII] $\lambda 3869$ and [OII] $\lambda 3727$ in emission in this spectrum. $N_1/H_8 > 3$, [OII] $\lambda 3727/H_8 > 1$.

CONCLUSION

All the galaxies have emission lines in their spectra.

SBS 1616+503 was discovered to be a probable Seyfert type galaxy.

It is noticed, that a considerable number of low luminosity galaxies have been discovered. They are 11 objects with $M_R^{<-17}$.

At presents the slit spectra of about 400 galaxies from the Second Byurakan Spectral Sky Survey have been studied. These data could be used for selection of different type active galaxies.

REFERENCES

- Drabek S.V., Kopylov I.M., Somov N.N., Somova T.A.: 1986, Astrofiz. Issled. (Izv. SAO), 22, 64.
- Lipovetsky V.A., Stepanian J.A., Erastova L.K., Shapovalova A.I.: 1988, Astrofizika, 29, 548.
- Markarian B.E., Lipovetsky V.A., Stepanian J.A.: 1984, *Astrofizika*, 20, 213; 1984, 21, 35.
- Stepanian J.A., Lipovetsky V.A., Erastova L.K., Shapovalova A.I.: 1991, Astrofizika, 34, 205.
- Stepanian J.A., Lipovetsky V.A., Erastova L.K., Shapovalova A.I., Gyulzadian M.B.: 1993a, Astrofiz. Issled. (Izv.SAO), this issue, V.
- Stepanian J.A., Lipovetsky V.A., Erastova L.K., Shapovalova A.I., Hakopian S.A.: 1993b, Astrofiz. Issled. (Izv. SAO), this issue, VI.
- Stepanian J.A., Lipovetsky V.A., Erastova L.K., Gyulzadian M.B., Izotov Yu.I., Guseva N.G.: 1993c, Astrofiz. Issled. (Izv. SAO), this issue, VII.